Maths Major Assignment Solutions for Student ID 1427755
Verified
Added on 2023/06/05
|8
|1291
|117
AI Summary
This article provides solutions to the Maths Major Assignment for Student ID 1427755. It covers topics such as generating Private and Public Keys, breaking the keys, and Weiner Attack.
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
Maths Major Assignment Solutions Student ID = 1427755 Using the student ID number we have to generate the Private and Public Keys. Then, Using nextprime function two prime numbers of form 4n+1 are generated The two numbers hence obtained are, P1=1427773and P2=1427809 Then, ∅(N) = (P1-1) (P2-1) =1427772* 1427808 =2038584283776 N = P1* P2 =1427773*1427809 =2038587139357 Using the formula, ed=1Mod(∅(N)) we get the value of, e =834301631117 d = 950292999365 Therefore, Public Key (Pu) = (N,e)= (2038587139357,834301631117)
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
Private Key (Pr) = (N,d)=(2038587139357,950292999365) Then, from the formula, C= Pemod N = 1427755^834301631117 mod2038587139357 = 608234997909 Then, using the formula, P= Cdmod N =608234997909^950292999365mod2038587139357 =1427755 The value of P is 1427755 which is the required original student ID number.
Breaking the keys: P1= 1427773 P2= 1427809 The numbers P1and P2are then represented as the sum of two squares. (1082)2+ (507)2= 1427773 (695)2+ (972)2= 1427809 Then, two right angled triangles are drawn, So, For the 1sttriangle C = n2+ (2m + n - 1)2 = 5072+ (2m + 507 - 1)2 (1082)2= (2m + 507 - 1)2 2m= 1082–506 m= 288 So, (m1, n1) = (288, 507) For 2ndtriangle, C = n2+ (2m + n - 1)2 = 6952+ (2m + 695 - 1)2 (972)2= (2m + 695 - 1)2 2m= 972 – 694 m= 139 So, (m2, n2) = (139, 695) √1427773 507 1082 √1427809 695 972
Now, Let P1= C1and P2= C2and let the smallest value of the two squares be n For the 1sttriangle, a = (2m - 1)(2m + 2n - 1) = (576 -1) (576 + 1014 - 1) = 913675 b = 2n (n + 2n -1) = 1014 (507+ 1014 -1) = 1541280 C = n2+ (2m + n - 1)2 = 257049 + (576 + 507 - 1)2 = 1427773 For the 2ndtriangle, a = (2m - 1)(2m + 2n - 1) = (278 - 1)(278 +1390 -1) = 461759 b = 2n (n + 2n -1) = 1390 (695 + 1390 -1) = 2896760 C = n2+ (2m + n - 1)2 = 483025 + (278+695-1)2 =483025 +944784 = 1427809 c1 a1 b1 c2 a2 b2
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Now, N = P1* P2 = 1427773 * 1427809 =2038587139357 259186^2 + 1404069^2 = 2038587139357 699339^2 + 1244794^2 = 2038587139357 Then, 2591862+ 14040692=6993392+ 12447942 6993392–2591862=14040692-12447942 Comparing with a2– b2= (a + b) (a - b) (958525) (440153) = (2648863) (159275) ABCD A = 958525 B = 440153 C = 2648863 D = 159275 gcd (A,C) = gcd (958525, 2648863) = 2164 gcd (B,D) = gcd (440153, 159275)= 1014 gcd (B,C) = gcd (440153, 2648863) = 1944 gcd (A,D) = gcd (958525, 159275) = 1390 According to Euler's Factorization Method, [(2164 2) 2 +(1014 2) 2 ][(1944 2) 2 +(1390 2) 2 ] = (10822+ 5072) (9722+ 6952) = (1427773) (1427809) Hence, these are the same prime numbers obtained by next prime function. We have to show that if∅(N) and N are known then the original primes P1and P2can be recovered.
N = P1* P2 = 1427773* 1427809 =2038587139357 ∅(N) = (P1-1) (P2-1) = (1427773- 1) (1427809 - 1) =2038584283776 We have, ∅(N) = (P1-1) (P2-1) ∅(N) = P1P2– P1– P2+ 1 ∅(N) = N – P1– P2+ 1 P1+ P2= N -∅(N) +1 Then, P2= N -∅(N) +1 – P1 P1= N -∅(N) +1 – P2 So, N = P1(N -∅(N) +1 – P1) = P1N – P1∅(N) + P1- P12 0 = P12+ P1(∅(N) – N - 1) + N Comparing with the equation ax2+ bx + c = 0,x=−b±√b2−4ac 2a a = 1 b =∅(N) – N – 1 = -2855582 c = 2038587139357 Then, putting the values of a, b and c in the equation, For negative sign, x = 1427773 = P1 For positive sign, x = 1427809 = P2
Weiner Attack e = 834301631117 N =2038587139357 Then, e N=834301631117 2038587139357 Its continued fraction is, Continued Fraction[0; 2, 2, 3, 1, 11, 1, 4, 1, 16, 8, 2, 1, 1, 2, 1, 7, 1, 29, 2, 7, 2, 3, 16] e N=k d=1 2+1 2+1 3 =7 17 k d=7 17 Therefore, k = 7 and d =17 Now, ∅(N)=(ed¿¿❑−1)/k¿ =2038584283776
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
We have, ∅(N) = (P1-1) (P2-1) ∅(N) = P1P2– P1– P2+ 1 ∅(N) = N – P1– P2+ 1 P1+ P2= N -∅(N) +1 Then, P2= N -∅(N) +1 – P1 P1= N -∅(N) +1 – P2 So, N = P1(N -∅(N) +1 – P1) = P1N – P1∅(N) + P1- P12 0 = P12+ P1(∅(N) – N - 1) + N Comparing with the equation ax2+ bx + c = 0,x=−b±√b2−4ac 2a a = 1 b =∅(N) – N – 1 = -2855582 c = 2038587139357 Then, putting the values of a, b and c in the equation, For negative sign, x = 1427773 = P1 For positive sign, x = 1427809 = P2