This document discusses the concept of fixed points and basin of attraction in Maths. It covers topics such as sinks and sources, graphs and equations related to fixed points, and the basin of attraction for each sink. Detailed explanations and examples are provided.
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
Table of Contents Question 1........................................................................................................................................................................1 a)..................................................................................................................................................................................1 The basin attractor boundary of the fixed point is sink........................................................................................................4 Question 2........................................................................................................................................................................5 Question 3........................................................................................................................................................................6 Question 4........................................................................................................................................................................8 Question 5........................................................................................................................................................................9 Question 6......................................................................................................................................................................10 Question 7......................................................................................................................................................................10 Question 8......................................................................................................................................................................11 Question 9......................................................................................................................................................................12 Question 10....................................................................................................................................................................13 Question 11....................................................................................................................................................................13 Question 12....................................................................................................................................................................14 Question 13....................................................................................................................................................................14 Question 14....................................................................................................................................................................18 References......................................................................................................................................................................19
Question 1 a) F(x) =1+2x-x2plot a graph along with the line y=x Plot the line y=x Let as consider the graph line is y=x Using the definition of the derivative, calculate the derivative of is F(x) =x2−¿2x-1 F’(x) =lim h→0 f(x+h)−f(x) h x012 y-0.5-2-1 ii.F(x) =1+2x-x2fixed points The order of the fixed points iteration is depends on F(x)=0 X element consider as, x1+x2+………….xn+xn+1 F(x)= 1+2x-x2 F(x) =x2−¿2x-1 X=2+2 xx2−¿2x=0 1
xn+2=2+2 xn x(x-2)=0 x1=1xn+2=1 xn−2 X2=2+2 1=4x2=1 2.7−2=1.428 X3=2+2 4=2.5x3=-1.666 X4=2.8x4=-0.27 X5=2.714x5=-0.57 X6=2.736x6=-.089 G(x) =1+1/xxn+2=1 xn−2 G’(x) =1/-x2g(x) =1 x−2 G’(x) = (1+√5 2)g’(x) =1 (x−2)2= 1 (1+√5 2)−2¿ 2¿=7.1818>1 G’(x) = 1 (1+√5 2) 2 =-0.3819660 |-0.3819660|<1 Fixed point is(0.38, 7.18) Remember thatxn+2=g(x) If |g’(r)|<1coverage If g’(r) =0coverage quadratic G’’(r) =0coverage order 3 (iii)F(x) =1+2x-x2determine whether they are sinks or sources, The fixed point of F by solving F(x) = 1+2x-x2get 0 and 7 fixed point of F. The period of the two points are found among the fixed points of the mapf2. The fixed point of F is not period two points. F(x) = 1+2x-x2 2
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
F(x) =x2−¿2x-1 F2(x)=(x2−2x−1)2=x4-4x2-1 The fixed point is 0 and 2 After simplification of the equation is x4-4x2-1 and x=0 Since 2 is the solution we can write as the equation is x-2 second degree of polynomial isx4-4x2-1=x-2 ¿¿-4x2-1)(x-2)=0 (x-2)=0¿¿-4x2-1)=0 So {1±√2} is consider as {1+√2,1−√2} we can consider F’ (1+√2,) F(1−√2,) Let as consider the value of y=4x-8 {4(1+√2,)-8 , 4(1−√2,)-8} Which is equal to the fixed point |-67| since the value is bigger than 1. We have a source period of the fixed point values is sink. iv. F(x) =1+2x-x2determine the basin of attraction for each sink. F(x) =x2−¿2x-1 The initial condition of the basin attraction is, lim n→∞ ¿¿¿)y=xor y=-x The fixed point of the two attractors system is the basin attraction for this map y=-x. The blank attractor of the basin attraction is y=x Basin boundary is no longer then smooth curve (Kharitonov, 2013). X=x(s) 3
X=x(x2−¿2x-1) Y=y(s) Y=y(x(x2−¿2x-1)) for 2>s>0 If s1≠s2 The basin attractor boundary of the fixed point is sink (Romeu and Vera‐Hernández, 2016). b) i. F(x) = 1/2+x+sin(x) plot the line graph y=x F(x) = 1/2+x+sin(x) F(x)= x +sin(x)+ ½ X=x+1 2sin(x) =0 F(x) = 1/2+x+sin(x) ii.fixed points The fixed point of the values Is consider as x1+x2+………….xn+xn+1 F(x)=x−¿sin(x)- ½ The graph of g(x) and x value is, Initially guest value is x0=2 i012345 Xi1.4091.4871.4961.4961.4971.497 G(x)= x+sin[x]+1/2 the fixed point values is 1.497 4
F(x) = 1/2+x+sin(x) iii.determine whether they are sinks or sources, ∫x+sin[x]+1/2dx ∫x+sin[x]+1/2dx =x 2+cos[x]+sin[x]+1/2 The source and sink value is{1±√2} is consider as {1+√2,1−√2} F(x)=1/2+x+sin(x) iv.determine the basin of attraction for each sink The fixed point of the two attractors system is the basin attraction for this map y=-x. The blank attractor of the basin attraction is y=x Basin boundary is no longer then smooth curve. X=x(s) X=x(1+√2,) Y=y(s) Y=y(x(1+√2,)) for 2>s>0 If s1≠s2 The basin attractor boundary of the fixed point is sink. c) i. {xlnxx≠0 ox=0 i.plot y=x F(x)=x ii. fixed point (0.1) iii. Sink and source can be denoted the sink value is constant iv. 5
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
{1±√2} is consider as {1+√2,1−√2} we can consider F’ (1+√2,) F(1−√2,) Let as consider the value of y=1 {4(1+√2,)-1 , 4(1−√2,)-1} Which is equal to the fixed point |-1| since the value is bigger than 1. We have a source period of the fixed point values is sink. Question 2 F(x)=a+bx+cx2 We can assume the 3 cycle value is, (0,1,2) F(x)= a+bx+cx2 a, b, c is the numerical constant value. But c is not equal to zero y= a+bx+cx2+dx3 y= a+bx+cx2+dx3+¿ex4 x=−b±√b2−4ac 2a Trajectory values is {0,1,2,0,1,2} 6
X=0, x=1, x=2 γ=t+x γ=t+x1 γ=t+x2 γ=t+x3 γ=0+x1, 1+x2, 2+x3 The lyapunov number of value 0 is map, of (0,1, 2) is the periodic sink. Question 3 F(x)=1+x+asin(x) a=1 Let as find the value of x=-b±√1−c X=−x±√1−sin(x) 2X1 7
X=√1−sin(1) 2X1=[0,1] The bifurcation value is, C=3.079 Question 4 F(x) =ax(1-x) To find the value of a=1 to apply the value is, F’(x) = ax(1-x) F’(x) =ax-x2 F’(x) =A(x-x2) X=1 a=ax (1-1)=0 λ=5 8
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
F(x),f2(x),f3(x),f4(x) the function of2nfixed point value is, pN(p) 12 21 32 43 N(p)=1 p(2p-∑ divide kXN(k) N(p)=1 pephT hT=lim p→∞ ¿¿=log¿¿=) 1 p(log(2p/p))=log(2)-1 plog(p) 9
1 p(log (25/5))=log (2)-1 5log(5) Stage 1N(p)Stage 2N(p)Stage 3N(p) 56152182251342176 Question 5 F(x)=4x(1-x) to find the 7 periodic orbit value is F(x)=4x-4x2 F(x) =x(4-4x)=4x(1-x2)=4(x-x2)=4x We can calculating the 7 periodic value is, F(x),f2(x),f3(x),f4(x),f5(x),f6(x) To find the diagonal of value y=x F(x) periodic value is, D(x)=4x(1-x) dx dt=4x(1-x) dx dt=4 x1 2(1-1 2)=1 X(t)=(t+T) of the interval value is[0,T] N(p)=1 p(2p-∑ divide kXN(k) =1 plog(2p p)=log(2)-1 p(log(p)) 1 27log(2X27 27)=log(2)-1 27(log(27))=4971008 Question 6 F(x)= 4x(1-x) Interval of the point itinerary is LRRRLRL Find the decimal place value is 5 F(x)= 4x(1-x) 10
F(x)=4x-4x2 F(x)=∫ o 5 4x−4x2dx F(x)= [4x1-8x2 2] F(x)=4-4x2 F(x)= 4x2+4=4(x2+1) F’(x)=(4(x2+1)) F’’(x)=(4(x2+1))2=8(x4+1) The interval 5 decimal place value of the end point s F(x)= {76, 82, 46, 81, 82} Question 7 F(x)= 4x(1-x) interval point is x∈{0,1} Find the value of [0.1/100] F(x)= 4x(1-x) First we can assume the trajectory method of the values, 4x(1-x)= {x0,x1,x2,……………….xn} The interval point of the shadow noise of length is 100 To find the maximum of Liebenberg value (marqur dt). And calculating the approximate sum of square value FQurd[x_]:4x(1-x) Der [x_] =evaluate [FQurd’[x]] Filter [x_, n_]:=Nest [Fqurdφ,x,n] F Traj[x_, n_]:= Nest list [Fqurdφ,x,n] Using high precision of digit value is 65 And find the 100thiteration value, Filter (0.1/100) Filter (N [1/10, 65], 100) Val 100= filter [N [1/10,100], 100] Trajectory interval of (0.1/100) value is, 11
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
Filter (0.1/100)=0.372447 Filter (N [1/10, 65], 100)=0.93011 Val 100=0.9310897 Question 8 a) F(x)=2xg(x)= 4x I.To find the Conjugate value is: F(x)=g(x) φ(F(x))=φg(4x) x=0 φ(F(2x))=φg(4x) φ(F(2(0)))=φg(4(0))=0 ii.¿findtheconjungacy The necessary of the condition of fixed point values is x=0 and can apply the value ofφ(x). The impliesφ(0)=0 is the conjungacy. iii. g(x)=4x f(x)=2x both are conjugate and conjungacy value. b) F(x) =x2g(x) =x2−2x+2 i. conjugate F(x)=g(x) φ(F(x))=φg(4x) x=0 φ(F(x2))=φg(x2−2x+2) φ(F(0))=φg (0) The homomorphism of the function f(x) is not conjugate because the g(x) is value is not zero iii. Conjungacy The necessary of the condition to apply the value of x=0 and F(x) is the conjungacy value G(x) is not conjungacy value because G(x) =-2 is not equal to zero iii.F(x) =x2and g(x) =x2−2x+2is not the conjugate and conjungacy value. For the reason of 12
G(x) is not equal to zero. c) f(x) = 2x + 1 and g(x) = 4x. i. conjugate F(x)=g(x) φ(F(x))=φg(4x) x=0 φ(F(2x+1))=φg(4x) φ(F(0))=φg (0) The homomorphism of the function f(x) is not conjugate because the g(x) is conjugate iii. Conjungacy The necessary of the condition to apply the value of x=0 and F(x) is the conjungacy value G(x) is not conjungacy value because f(x) =1 is not equal to zero iii.F(x) =2x + 1and g(x) =4x.is not the conjugate and conjungacy value. For the reason of F(x) is not equal to zero. Question 9 Lyapunov number and Lyapunov exponent of the point of thex0=0.2 F(x)=sin(πx) F(x)= sin(πx) x0=0.2 F(x)= sin(πX0.2) F(x)= sin(0.658) F(x)=0.58 x'+xn+1=F(x¿)+x0f'(x) +x0 2''(x) =sin (πx) + 0.2 cos(πx)+0.2 2sin(πx) =∏ i=0 n−1 DF(xi)δ0 =∏ i=0 n−1 DF(πx)X0.2 13
=lim n→∞ sin(πX0.2)+cos(πX0.2) =-0.20 Question 10 We can consider the binary expansion of the point of x map is, LRRLLRLLR First we can calculating the decimal values of the each letter point The iteration of the binary conversion is 100010100010100010100010100010100010100010 100010100010 LRRLLRLLR Question 11 Stationary distribution f(x)=a(x-x3) A=3√3 2x0=0.2 Length=105 Interval value is [-1, 1] f(x)= a(x-x3) f(x)=3√3 2(x-x3) x=-1, x=1 F(x)=3√3 2((-1)-(−1)3)=-4.242 F(x) =3√3 2((1)-(1)3)=0 F(x) =0 The consider the length of105values, we can apply thevalueisx0=0.2 14
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
3√3 2((0.2)-(0.2)3)x100=-3.5757 Question 12 Layapunov exponent of the functionx0=0.2 The first component of F is map F:0.20.2 xP+1=f(xp) xp=x0 xp=0.2 Iterative interval is {x0,x1,x2,……..xp} xp+δp=¿f(0.2+δ0) xp+δp=fp(0.2)+∂fp(x) ∂x ∂fp(x) ∂x=∂fp(x) ∂fp−1(xp−1)+∂fp(x) ∂fp−2(xp−2)+∂f1(x) ∂x =lim p→∞ ∂fp(x) ∂fp−1(xp−1)+∂fp(x) ∂fp−2(xp−2)+∂f1(x) ∂x Exponent of theLyapunovnumber is, λ=∂f ∂xδp=λ'δ0 λ'=∂fp(x) ∂x+∂fp−1(x) ∂x+∂f1(x) ∂x h(x)=inl(λ'¿=lim p→∞ 1 p∑ i ¿∂fp ∂x∨¿¿ h=|h/2| xp+1={0.2xpxp≤0 0.2(1−xp)xp≥0} Question 13 Unstable heron map b=0.3a=1.4 Radius=0.1 15
X range [-4, 4] y range = [-4, 4] The heron map of two parameters H(x, y) = (1+y-ax2, bx) Parameter of the value is a=1. 4, b=0.3 xn+1=yn+1-axn 2 yn=bxn X’=x Y’=1+y- ax2 X’’=bx’ Y’’=y’ U=y2+x 2v=x2+2y ∂(u,v) ∂(x,y)= [∂u ∂x ∂u ∂y ∂v ∂x ∂v ∂y]= [y2+x 22y+x/2 2x+2yx2+2]=[2y2+14y+x 2x+2yx2+2] =x2+5y6+3x+3=0 Fixed point of the graph line is, 16
We can use the formula of x0=−(1−b)±√(1−b)2+4ac 2a =−(1−0.3)±√(1−0.3)2+4X1.4X0,1X4 2a =0.392 npar=106is the denoted as the interval values is {1.3999, 1.40001} Circle of the fixed point N=14 times nskip=104 n¿=57 dx dt=p 17
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
dp dt=-x-p A=cos wT (e−γT/2cosWT−(1+e−p)T) anparninitnskipntimenwinnskip [1.3, 1.4]10145000101310121157 [1.3999,1.40001]1014100001013101238 [1.39999,1.400001 ] 1014141013101210 The interval of the fixed time point region is [1.39999, 1.400001] length is 2.104And 57 is the parameter value of sink. 14 parameter value is 2.1012 A=1.39999 b=0.3 henon map of 100000 point values x axis 0.9X1012and 1.1X1012 18
Thezoomed-in plot with ranges is denoted as 0.4 X1011and 0.6X1012 Question 14 Let F(x, y) = (y2+x 2,x2+2y) compute its jacobian, located fixed point, andpoints, and say whether they are saddles, sources, or sinks. F(x, y) = (y2+x 2,x2+2y) F(x)=y2+x 2F(y)=x2+2y The jacobian equation can be consider as, U=y2+x 2v=x2+2y ∂u ∂x=y2+1 2=2y2+1 ∂u ∂y=2y++x 2= 4y+x ∂v ∂x=2x+2y ∂v ∂y=x2+2 Jacobian matrix is, (2y2+14y+x 2x+2yx2+2) Let as assume the fixed points is (1, 0), (0, 1) F(x)(1,0)= (0, 5) F(y)(1,0)= (0, 1.4) Let as consider the sink and source is, F(x)=y2+x 2F(y)=x2+2y Since the solution can be write the equation of the x and y is2y2+1is the second degree of the values of the polynomial is2y2+1(x+2)=0 (x+2)=02y2+1=0 19
2y2=-1 y2=1 2y=√1 2 If the condition of x is the {1±√2} that can consider the values is {1+√2,1−√2} The F(x) value to apply the F(y) F(y) =x2+2y Y=1 F(y) =x2+2={¿,(1−√2)2+2) which is equal to |5| since the value is bigger than 2 consider the source period of the fixed point is sink. References Kharitonov, V. (2013).Time-delaysystems. New York: Birkhäuser. Romeu, A. and Vera‐Hernández, M. (2016). Counts with an endogenous binary regressor: A series expansion approach.TheEconometricsJournal, 8(1), pp.1-22. 20