Matrices and Interest Rates: Analysis of Financial Problems

Verified

Added on  2022/11/25

|9
|388
|77
Homework Assignment
AI Summary
This assignment solution covers various aspects of matrices and interest rates, including matrix operations, solving linear equations using Gaussian elimination and Cramer's rule, and financial calculations such as compound interest. The solution demonstrates the application of matrices in solving financial problems, including calculating future values and determining interest rates. The assignment includes detailed step-by-step solutions for each problem, providing a comprehensive understanding of the concepts and methodologies involved. The solution also provides examples of arithmetic progressions and their applications. This document is a helpful resource for students studying finance and mathematics, providing practical examples of how to solve real-world problems.
Document Page
Running Head: MATRICES AND INTEREST RATES
MATRICES AND INTEREST RATES
Name
Institute of Affiliation
Date
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
MATRICES AND INTEREST RATE 2
Question 1
i. ,
A=
[1 0
3 5 ] , B= [2 1
4 3 ]
A +B = [ 2 1
4 3 ] + [ 1 0
3 5 ]
= [1 1
7 8 ]
ii. ,
2A - 3B =2 [ 2 1
4 3 ] -3 [ 1 0
3 5 ]
= [4 2
8 6 ] - [3 0
9 15 ]
= [ 1 2
17 9 ]
iii. ,
AB= [2 1
4 3 ] . [1 0
3 5 ]
= [ 2 1
26 18 ]
iv. ,
AB+BA = [2 1
4 3 ] . [1 0
3 5 ] +. [1 0
3 5 ] .[2 1
4 3 ]
= [ 1 4
31 33 ]
b. ,
A= [ 3 2
1 1 ]
Document Page
MATRICES AND INTEREST RATE 3
B= [ 0 4
2 8 ]
X=2A -B
= 2 [ 3 2
1 1 ] - [ 0 4
2 8 ]
= [ 2 1
56 39 ]
c. ,
i.
A= [ 3 2
1 6 ]
Det A= (3 x 6) – (1 x 2)
=16
ii.
A1 = 1
16 [ 6 2
1 3 ]
= [ 0.3750 0.1250
0.0625 0.1875 ]
iii. ,
AX=[ 5 6
7 2 ]
X= A1
[ 5 6
7 2 ]
= [ 0.3750 0.1250
0.0625 0.1875 ]. [5 6
7 2 ]
= 1.5000 0.5000
2.5000 0.5000
Document Page
MATRICES AND INTEREST RATE 4
v. ,
YA=[ 5 6
7 2 ]
Y= A1
[ 5 6
7 2 ]
= 0 1
0 .5000 0.5000
Question 2
a. ,
X+3y = -10
3x+2y = 5
.x = -3y-10
3(-3y-10) + 2y = 5
-9y -30 + 2y = 5
-7y = 35
Y=-5
X= -3(-5) -10
= 5
b. ,
3x +2y = 9
4x -3y=12
12x + 8y = 36
12x -9y = 36
17y =0
Y=0
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
MATRICES AND INTEREST RATE 5
3x +0 = 9
X=3
c. ,
x14 x2 + x3=0
2 x1 3 x2 +7 x3=0
x12 x2 =0
[1 4 1
2 3 7
1 2 0 ] { x1
x2
x3
} = {
0
0
0 }
Gaussian elimination
[1 4 1 ¿ 0
2 3 7 ¿ 0
1 2 0 ¿ 0 ]
d. 2x+y = 5
x-y= 1
[2 1
1 1 ] { x
y } = [5
1 ]
Det a = (-1*2)-(1*1)
= -3
Inv a = 1
3 [ 1 1
1 2 ]
= [ 0.3750 0.1250
0.0625 0.1875 ]
{ x
y }=¿ [ 0.3750 0.1250
0.0625 0.1875 ][ 5
1 ]
= [ 2
1 ]
Document Page
MATRICES AND INTEREST RATE 6
e. ,
f. 2x+y = 5
x-y= 1
[ 2 1
1 1 ] { x
y } = [ 5
1 ]
Augmented matrix is as follows
[ 2 1 ¿5
1 1 ¿ 1 ]
g. , crammers rule
For y y= [ 2 5
1 1 ]
Det y = ( 21 )(51)
= -3
For x [5 1
1 1 ]
Det x = 5*-1 – 1*1
= -6
X= detx/det
= -6/-2
= 2
Y= dety/det
= -3/-3
= 1
Question 3
Document Page
MATRICES AND INTEREST RATE 7
a. ,
A=P(1+ 2.1
100)6
= 6000(1+ 2.1
100)6
= 6796.82
b. ,
5978.1 = 5000(1+ r
400 ) 12
1.1956 = (1+ r
400 ) 12
Log 1.1956 = 12 log (1+0.0025 r)
0.0064654 = log 1 + log 0.0025 r
1.015 = r
Rate = 1.5 %
c. ,
F=A
( (1+ r
100 )n
1
r
100 )
i. F = 2500
( (1+ 5
100 )2
1
5
100 )
= 5125
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
MATRICES AND INTEREST RATE 8
ii. F =(5125+ 2500)
( (1+ 5
100 )1
1
5
100 )
= 7625
iii. F =(7625+ 2500)
( (1+ 5
100 )1
1
5
100 )
= 10125
F =(10125+ 2500)
( (1+ 5
100 )1
1
5
100 )
= 12626
Q4
a. ,
A =P(1+ R
100)N
= 500(1+
9
12
100
)18
= 571.98
b. ,
Compound interest
10000= 5000(1.06)N
Log 2 = Nlog 1.06
Document Page
MATRICES AND INTEREST RATE 9
N= log 2
log 1.06
= 11.89 years
c. ,
i. ,
a= 5
ii. ,
d= 11-5 = 17-11
= 6
iii. ,
The 15th term = a + d(15-1)
= 5 + ( 6 *14)
= 89
chevron_up_icon
1 out of 9
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]