MCE226L, Mini-Project
VerifiedAdded on 2022/11/13
|8
|544
|433
AI Summary
This document explains the Mittag-Leffler function with parameters α, β and its approximation using C programming. It includes a flowchart and C program for the same.
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
Running head: MCE226L, Mini-Project
Type equation here .
MCE226L, Mini-Project
Name of the Student
Name of the University
Author Note
Type equation here .
MCE226L, Mini-Project
Name of the Student
Name of the University
Author Note
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
1MCE226L, Mini-Project
The Mittag-Leffler function with parameters α, β are given by the following expression.
M L ( α , β ) ( z )=∑
k=0
∞ zk
Γ ( α∗k+ β )
The Γ symbol is the gamma function which is defined by,
Γ ( n)=(n−1)!
The infinite sum of M-L function is approximated by certain number of terms in which the
error between current and next iteration is less than the tolerance which is En =0.0001. The
values of α, β are considered positive integers here. The values of M-L function for different
z in a user-defined range are printed using C programming.
Flowchart of algorithm:
The Mittag-Leffler function with parameters α, β are given by the following expression.
M L ( α , β ) ( z )=∑
k=0
∞ zk
Γ ( α∗k+ β )
The Γ symbol is the gamma function which is defined by,
Γ ( n)=(n−1)!
The infinite sum of M-L function is approximated by certain number of terms in which the
error between current and next iteration is less than the tolerance which is En =0.0001. The
values of α, β are considered positive integers here. The values of M-L function for different
z in a user-defined range are printed using C programming.
Flowchart of algorithm:
2MCE226L, Mini-Project
C programme:
#include <stdio.h>
#include <conio.h>
C programme:
#include <stdio.h>
#include <conio.h>
3MCE226L, Mini-Project
#include <math.h>
#include <stdlib.h>
int gammafunc(int num);
int main()
{
// initialization of paramters
float zstart;
float zend;
float inc;
float z;
int alpha;
int beta;
printf("Enter positive value of starting z: ");
scanf("%f",&zstart);
while (zstart<0)
{
#include <math.h>
#include <stdlib.h>
int gammafunc(int num);
int main()
{
// initialization of paramters
float zstart;
float zend;
float inc;
float z;
int alpha;
int beta;
printf("Enter positive value of starting z: ");
scanf("%f",&zstart);
while (zstart<0)
{
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
4MCE226L, Mini-Project
printf("You must enter positive value of starting z: ");
scanf("%f",&zstart);
}
printf("Enter positive value of ending z: ");
scanf("%f",&zend);
while (zend<0)
{
printf("You must enter positive value of ending z: ");
scanf("%f",&zend);
}
printf("Enter positive value of increment: ");
scanf("%f",&inc);
printf("Enter value of alpha which is integer: ");
scanf("%d",&alpha);
printf("Enter value of beta which is integer: ");
scanf("%d",&beta);
printf("You must enter positive value of starting z: ");
scanf("%f",&zstart);
}
printf("Enter positive value of ending z: ");
scanf("%f",&zend);
while (zend<0)
{
printf("You must enter positive value of ending z: ");
scanf("%f",&zend);
}
printf("Enter positive value of increment: ");
scanf("%f",&inc);
printf("Enter value of alpha which is integer: ");
scanf("%d",&alpha);
printf("Enter value of beta which is integer: ");
scanf("%d",&beta);
5MCE226L, Mini-Project
for (z=zstart;z<zend;z=z+inc)
{
float out1; int k;float out2; k=0;
out1= 0;
out2 = pow(z,k)/gammafunc(alpha*(k) + beta);
// Calculation loop
while (fabs(out2 - out1)>=0.0001) // tolerance is 1e-4
{
out1 = out1 + pow(z,k)/gammafunc(alpha*k + beta);
out2 = out1 + pow(z,k+1)/gammafunc(alpha*(k+1) + beta);
k=k+1;
}
printf("The value of the Mittag-Leffler function for the input %.4f is %.4f \n",z,out2);
}
return 0;
}
int gammafunc(int num) // function definition
{
for (z=zstart;z<zend;z=z+inc)
{
float out1; int k;float out2; k=0;
out1= 0;
out2 = pow(z,k)/gammafunc(alpha*(k) + beta);
// Calculation loop
while (fabs(out2 - out1)>=0.0001) // tolerance is 1e-4
{
out1 = out1 + pow(z,k)/gammafunc(alpha*k + beta);
out2 = out1 + pow(z,k+1)/gammafunc(alpha*(k+1) + beta);
k=k+1;
}
printf("The value of the Mittag-Leffler function for the input %.4f is %.4f \n",z,out2);
}
return 0;
}
int gammafunc(int num) // function definition
{
6MCE226L, Mini-Project
{
int fact=1,i;
for (i=1;i<=num-1;i++)
{
fact = fact*i;
}
return fact;
} // return statement
}
Sample Output:
{
int fact=1,i;
for (i=1;i<=num-1;i++)
{
fact = fact*i;
}
return fact;
} // return statement
}
Sample Output:
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
7MCE226L, Mini-Project
1 out of 8
Your All-in-One AI-Powered Toolkit for Academic Success.
+13062052269
info@desklib.com
Available 24*7 on WhatsApp / Email
Unlock your academic potential
© 2024 | Zucol Services PVT LTD | All rights reserved.