Desklib is an online library for study material with solved assignments, essays, dissertations, and more. It provides a wide range of content for various subjects and courses. Find the content you need for your assignments and courses.
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
ME5112 Math’s Assessment Student Name Institution Date of Submission
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
1.Solving the differential equation i. ydy dx−(1+y2)x2=0 dy dx=(1+y2)x2 y ii.dx dt−x t−1=t2−1 dx dt=t2−1+x t−1 Whent>1 dx dt>(2−1)+x 2−1 Hencedx dt>0 2.Using the Maclaurin series In this problem will apply the first four non-zero terms of the McLaurin’s series to approximatef(x)=ln(1+2x)and thereafter obtain the value off(1.2)to 4 decimal places The McLaurin’s series formula is given as; f(0)+f'(0) 1!x+f''(0) 2!x2+f'''(0) 3!x3+fiv(0) 4!x4…fn(0) n!xn f(x)=ln(1+2x) f(0)=ln(1+2∗0)=ln(1)=0 fi(x)=d dxln(1+2x)=2 1+2x fi(0)=2 1+2x=2 fii(x)=d dxfi(x) fii(x)=d dx 2 1+2x=−4 (1+2x)2
fii(0)=4 (1+2∗0)2=−4 fiii(x)=d dx −4 (1+2x)2=16 (1+2x)2 fiii(0)=16 (1+2∗0)2=16 fiv(x)=d dx 16 (1+2x)2=−96 (1+2x)4 fiv(0)=−96 (1+2∗0)4=−96 Now replacing the values in the series expansion formula we obtain f(0)+f'(0) 1!x+f''(0) 2!x2+f'''(0) 3!x3+fiv(0) 4!x4=0+2 1!x−4 2!x2+16 3!x3−96 4x4 ¿2x−2x2+8 3x3−4x4 thisistheMcLaurin’s series expansion of f(x)=ln(1+2x) Atf(1.2)wehave2(1.2)−2(1.2)2+8 3(1.2)3−4(1.2)4=−4.166 3.Taylor’s series Using the first 5 terms of the Taylors series to estimate the value of f(1.1)¿2decimalPlaces. The formula is given by: f(x)=f(a)+f'(a) 1!(x−a)+f''(a) 2!(x−a)2+f'''(a) 3!(x−a)3+fiv(a) 4!(x−a)4…fn(a) n!(x−a)n¿ For the given problem the value of a is 1with this the above formula can be expressed as f(x)=f(1)+f'(1) 1!(x−1)+f''(1) 2!(x−1)2+f'''(1) 3!(x−1)3+fiv(1) 4!(x−1)4…fn(1) n!(x−1)n¿ Now
f(a)=f(1)=1 1=1 f'(a)=f'(1)=d dxx−1=−1x−2=−1 f''(a)=f''¿ f'''(a)=f'''(1)=d dx(2x−3)=−6x−4=−6 fiv(a)=fiv(1)=d dx(−6x−4)=24x−5=24 Replacing the obtained values in the previously stated formula gives f(x)=1−1 1!(x−1)+2 2!(x−1)2−6 3!(x−1)3+24 4!(x−1)4 whichcanBe simplified to 1−(x−1)+(x−1)2−(x−1)3+(x−1)4 This is the Taylor’s series expansion Now obtaining f(1.1)=1−(1.1−1)+(1.1−1)2−(1.1−1)3+(1.1−1)4 ¿1−1.1+0.12−0.13+0.14=0.9091 4.Integral i. ∫ 0 1 1 1+x2=¿∫ 0 1 (1+x2)−1 ¿ Letu=1+x2 Then∫ 0 1 u−1dx du dx=2x dx=du 2x
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
¿ ∫ 0 1 (u)−1∗1 2xdu=∫ 0 11 u∗1 2xdu=1 2xlnu ¿1 2ln(1+12)=π 4 ii) Binomial series f(x)=1 1+x2 The formula is stated as (1+x)k=1+kx+k(k−1) 2!x2+k(k−1)(k−2) 3!x3 k=2 5.Eigenvalues and eigenvectors A=[62 23] Eigenvlues Given A to be a square matrix, v a vector andλis a scalr tht satisfy the formulaAv=λv. λIs defines as the eigenvalue with eigenvector v of A. hencetheEigenvalues of will be obtained from the roots of the equationdet(A−λI)=0 Hence det((62 23)−λ(10 01)):λ2−9λ+14 Solving forλ2−9λ+14=0 Using the quadratic equation we obtain the values ofλas2nd7 This are the eigenvalues of matrix A Eigenvectors Being that A is a square matrix, v vector andλa scalar satisfying the equtionAv=λv, therefore v is an eigenvector of A The eigenvalues as obtained above are 2 and 7.
Therefore the eigenvectors ofλ=2; Solving (A−2I¿=[62 23]−2(10 01)=(42 21) Solving(42 21)(x y)=(0 0) By reducing(42 21)weobtin(11 2 00) Hence (A−2I¿(x y)=(11 2 00)(x y)=(0 0) This reduces tox+1 2y=0,ifyouletybe1weobtain ( −1 2 1 ) And the eigenvectors forλ=7: Solving (A−2I¿=[62 23]−7(10 01)=(−12 2−4) (−12 2−4)(x y)=(0 0) reducing(−12 2−4)gives(1−2 00) givestheSystem (A−7I¿(x y)=(1−2 00)(x y)=(0 0) Which gives the equationx−2y=0.isolatex=2yndplug∈(x y) If you lety=1,youobtain(2 1)
The eigenvector for the matric A is thereby given by(−1 2 1),(2 1) 6.Newton’s law of cooling Describe Euler’s method Application Euler’s method is a tool that is applied in numerical arithmetic to approximate values of solutions involving differential equations. It applies the formulayn=yn−1+hF(xn−1,yn−1),wherey0istheinitial value of y and h the step size. Formula yn=yn−1+hF(xn−1,yn−1) dT dt=−1 3T+20−10e−t The initial starting point is 60 with a step size of 0.5. We therefore go fromx:0,0.5,1,1.5,2,2.5,3 Now y1=y0+hF(x0,y0) ¿60+0.5(−10) 55 y2=y1+hF(x1,y1) ¿55+0.5∗−4.3986=52.8 y3=y2+hF(x2,y2) ¿52.8+0.5∗(−1.2788)=52.16 y4=y3+hF(x3,y3) ¿52.16+0.5∗(0.3820)=52.35 y5=y4+hF(x4,y4) ¿52.35+0.5∗(1.1966)=52.95
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
y6=y5+hF(x5,y5) 52.95+0.5∗(1.5292)=53.71 y7=y6+hF(x6,y6) ¿53.71+0.5∗(1.5988)=54.509 Hence the value of T (3) as approximated by the Euler’s method is 53.71℃ 7.Graphs a.Plotting the data in the table V (m^3)P(kPa) 1520 2350 3237 4140 598 673 012345678 0 100 200 300 400 500 600 A line graph of Pressure against Volume of a gas Volume (m^3) Pressure (kPa)
∫ a b f(x)dx≈∆x 2[f(x0)+2f(x1)+2f(x2)+2f(x3)+2f(x4)+…f(xn)] ∆x=7−1 6=1 ≈1 2[520+2(350)+2(237)+2(140)+2(98)+2(73)+59]=1 2∗2375 ≈1187.5 d.Comparing the results Using integration W=1168.6598 Using Simpson’s rule W=1167 Using Trapezium W=1187.5 8.Torricelli’s a.dv dt=−a√2gh dv dt=−a(2gh)(1 2) v=∫−a(2gh) (1 2)dt v=a(2gh) (1 2)t+c v=−a(2∗9.8∗h) 1 2+c a is the cross sectional area of a circle given byπr2=22 2∗(0.025)2=11 5600 v=−11 5600(98 5h)1 2t+c Hence, making h the subject t of the formula gives
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
h=(v −8.6963) 2 dh dt=v2d dt(−8.6963∗10−3t)2 =−1.230∗10−5√h b.At v¿0,t=c But at timet=0,the tank if full hencev=c Since is given byπr2h=22 7∗1.52∗4=¿28.2857, Hence the tank will be empty after 28.29 seconds.
References Autar, K., Egwu, K. & Duc, N., 2008.Numerical Methods with Applications.[Online] Available at:http://nm.mathforcollege.com/topics/textbook_index.html [Accessed 31 December 2018]. Dani, S., 2012. Ancient Indian Mathematics –.A Conspectus". Resonance. ,17(3), p. 236–246.