Desklib - Online Library for Study Material

Verified

Added on  2023/04/21

|12
|2189
|244
AI Summary
Desklib is an online library for study material with solved assignments, essays, dissertations, and more. It provides a wide range of content for various subjects and courses. Find the content you need for your assignments and courses.
tabler-icon-diamond-filled.svg

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
ME5112 Math’s Assessment
Student Name
Institution
Date of Submission
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
1. Solving the differential equation
i.
y dy
dx ( 1+ y2 ) x2=0
dy
dx = ( 1+ y2 ) x2
y
ii. dx
dt x
t1 =t21
dx
dt =t21+ x
t1
When t >1
dx
dt > ( 21 )+ x
21
Hence dx
dt >0
2. Using the Maclaurin series
In this problem will apply the first four non-zero terms of the McLaurin’s series to
approximate f ( x ) =ln (1+2 x) and thereafter obtain the value of f ( 1.2 )to 4 decimal
places
The McLaurin’s series formula is given as;
f ( 0 )+ f '(0)
1 ! x + f ' '(0)
2! x2 + f ' ' ' (0)
3! x3+ f iv (0)
4 ! x4 f n ( 0 )
n! xn
f ( x )=ln (1+2 x)
f ( 0 )=ln ( 1+20 )=ln (1 )=0
f i ( x )= d
dx ln ( 1+2 x )= 2
1+ 2 x
f i ( 0 )= 2
1+ 2 x =2
f ii ( x ) = d
dx f i ( x )
f ii ( x ) = d
dx
2
1+2 x = 4
( 1+2 x ) 2
Document Page
f ii ( 0 ) = 4
( 1+20 )2 =4
f iii ( x ) = d
dx
4
( 1+2 x )2 = 16
( 1+2 x ) 2
f iii ( 0 )= 16
( 1+20 )2 =16
f iv ( x ) = d
dx
16
( 1+2 x ) 2 = 96
( 1+2 x ) 4
f iv ( 0 )= 96
( 1+20 )4 =96
Now replacing the values in the series expansion formula we obtain
f ( 0 ) + f ' (0)
1 ! x + f ' '( 0)
2! x2 + f ' ' ' (0)
3! x3+ f iv( 0)
4 ! x4=0+ 2
1 ! x 4
2 ! x2 + 16
3 ! x3 96
4 x4
¿ 2 x2 x2 + 8
3 x34 x4
this is theMcLaurin’s series expansion of
f ( x )=ln (1+2 x)
At f ( 1.2 ) we have 2 ( 1.2 ) 2 ( 1.2 ) 2 + 8
3 ( 1.2 ) 34 ( 1.2 ) 4 =4.166
3. Taylor’s series
Using the first 5 terms of the Taylors series to estimate the value of
f ( 1.1 ) ¿ 2 decimal Places.
The formula is given by:
f ( x ) =f ( a)+ f ' ( a )
1! ( xa)+ f ' ' (a)
2 ! (xa)2 + f ' ' '(a)
3 ! (xa)3 + f iv (a)
4 ! ( xa)4 f n ( a )
n ! ( x a)n ¿
For the given problem the value of a is 1with this the above formula can be expressed as
f ( x )=f (1)+ f ' (1 )
1! (x1)+ f ' '(1)
2 ! ( x1)2 + f ' ' ' (1)
3 ! ( x1)3+ f iv (1)
4 ! ( x 1)4 f n ( 1 )
n ! ( x1)n ¿
Now
Document Page
f ( a )=f ( 1 )=1
1 =1
f ' ( a )=f ' ( 1 )= d
dx x1=1 x2=1
f ' ' ( a ) =f ' ' ¿
f '' ' ( a )=f ' '' (1 )= d
dx (2 x3 ) =6 x4 =6
f iv ( a ) =f iv ( 1 ) = d
dx (6 x4 ) =24 x5=24
Replacing the obtained values in the previously stated formula gives
f ( x )=1 1
1 ! ( x1 ) + 2
2 ! ( x1 )2 6
3 ! ( x 1)3 + 24
4 ! ( x1)4
which can Be simplified to
1 ( x1 ) + ( x 1 ) 2 ( x1 ) 3 + ( x1 ) 4
This is the Taylor’s series expansion
Now obtaining
f ( 1.1 ) =1 ( 1.11 ) + ( 1.11 )2 ( 1.11 )3 + ( 1.11 ) 4
¿ 11.1+0.12 0.13+ 0.14=0.9091
4. Integral
i.

0
1
1
1+ x2 =¿
0
1
( 1+ x2 ) 1
¿
Let u=1+ x2
Then
0
1
u1 dx
du
dx =2 x
dx= du
2 x
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
¿

0
1
( u )11
2 x du=
0
1 1
u 1
2 x du= 1
2 x lnu
¿ 1
2 ln ( 1+12 )= π
4
ii) Binomial series
f ( x )= 1
1+ x2
The formula is stated as
( 1+x ) k=1+kx + k ( k 1 )
2 ! x2+ k ( k 1 ) ( k2 )
3 ! x3
k =2
5. Eigenvalues and eigenvectors
A=[6 2
2 3]
Eigenvlues
Given A to be a square matrix, v a vector and λ is a scalr tht satisfy the formula Av=λv .
λ Is defines as the eigenvalue with eigenvector v of A.
hence theEigenvalues of will be obtained from the roots of the equation det ( AλI ) =0
Hence
det ( (6 2
2 3 )λ (1 0
0 1) ): λ29 λ+14
Solving for λ29 λ+14=0
Using the quadratic equation we obtain the values of λ as 2nd 7
This are the eigenvalues of matrix A
Eigenvectors
Being that A is a square matrix, v vector and λa scalar satisfying the eqution Av=λv ,
therefore v is an eigenvector of A
The eigenvalues as obtained above are 2 and 7.
Document Page
Therefore the eigenvectors of λ=2 ;
Solving ( A2 I ¿=[6 2
2 3 ]2 (1 0
0 1 )= (4 2
2 1)
Solving ( 4 2
2 1 )( x
y ) =( 0
0 )
By reducing (4 2
2 1 )we obtin (1 1
2
0 0 )
Hence ( A2 I ¿ ( x
y )= ( 1 1
2
0 0 ) ( x
y ) =( 0
0 )
This reduces to x + 1
2 y=0 , if you let y be 1 weobtain
(
1
2
1
)
And the eigenvectors for λ=7 :
Solving ( A2 I ¿=[6 2
2 3 ]7 (1 0
0 1)=(1 2
2 4 )
(1 2
2 4 )( x
y )=(0
0 )
reducing (1 2
2 4 ) gives ( 1 2
0 0 )
gives theSystem ( A7 I ¿ ( x
y )= (1 2
0 0 )( x
y )=(0
0 )
Which gives the equation x2 y=0. isolate x=2 y nd plug ( x
y )
If you let y=1 , you obtain (2
1 )
Document Page
The eigenvector for the matric A is thereby given by ( 1
2
1 ) ,(2
1)
6. Newton’s law of cooling
Describe Euler’s method
Application
Euler’s method is a tool that is applied in numerical arithmetic to approximate values of
solutions involving differential equations.
It applies the formula yn= yn1 +hF ( xn1 , yn1 ) , where y0 isthe initial value of y and h
the step size.
Formula
yn= yn1 +hF (xn1 , yn 1 )
dT
dt =1
3 T +2010 et
The initial starting point is 60 with a step size of 0.5.
We therefore go from x : 0 ,0.5 , 1,1.5,2,2.5,3
Now
y1= y0 +hF(x0 , y0)
¿ 60+0.5 ( 10 )
55
y2= y1 +hF (x1 , y1 )
¿ 55+0.54.3986=52.8
y3= y2 +hF (x2 , y2 )
¿ 52.8+0.5(1.2788 )=52.16
y4 = y3 +hF ( x3 , y3 )
¿ 52.16+0.5( 0.3820 ) =52.35
y5= y 4 +hF ( x4 , y4 )
¿ 52.35+0.5( 1.1966 )=52.95
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
y6= y5+ hF(x5 , y5)
52.95+0.5( 1.5292 )=53.71
y7= y6+hF(x6 , y6)
¿ 53.71+0.5( 1.5988 ) =54.509
Hence the value of T (3) as approximated by the Euler’s method is 53.71
7. Graphs
a. Plotting the data in the table
V
(m^3) P(kPa)
1 520
2 350
3 237
4 140
5 98
6 73
0 1 2 3 4 5 6 7 8
0
100
200
300
400
500
600
A line graph of Pressure against Volume of a gas
Volume (m^3)
Pressure (kPa)
Document Page
b. P=717 e0.377 v
W is given by the formula
v 1
v 2
Pdv
Hence

1
7
717 e0.377 v dv
¿ 717
1
7
e0.377 v dv
¿ 717 [ 1
0.377 e0.377 v
],¿ 1 ¿ 7
this gives 717 ¿]
¿ 7171.62993=1168.6598
W =1168.6598
c. Using Simpson’s rule
Formula

a
b
f ( x ) dx Sn
Sn= x
3 [ f ( x0 ) +4 f ( x1 ) +2 f ( x2 ) +4 f ( x3 ) +2 f ( x4 ) + f ( xn ) ]
x= ba
n = 71
6 =1
since n=6
Therefore
S6 =1
3 ¿]
¿ 1
3 [520+ 4 ( 350 ) +2 ( 237 ) +4 ( 140 ) +2 ( 98 ) +4 ( 73 ) +59]
¿ 1
3 [ 520+1400+474 +560+196+292+59 ] =1
33501 1167
Trapezium rule
Formula
Document Page

a
b
f ( x ) dx x
2 [f ( x0 ) +2 f ( x1 ) +2 f ( x2 )+2 f ( x3 ) + 2 f ( x4 ) + f ( xn ) ]
x= 71
6 =1
1
2 [ 520+2 ( 350 ) + 2 ( 237 ) + 2 ( 140 ) +2 ( 98 ) +2 ( 73 ) +59 ] =1
22375
1187.5
d. Comparing the results
Using integration
W =1168.6598
Using Simpson’s rule
W =1167
Using Trapezium
W =1187.5
8. Torricelli’s
a. dv
dt =a 2 gh
dv
dt =a ( 2 gh )( 1
2 )
v=a ( 2 gh )
( 1
2 ) dt
v=a ( 2 gh )
( 1
2 ) t+c
v=a ( 29.8h )
1
2 + c
a is the cross sectional area of a circle given by π r2= 22
2 ( 0.025 ) 2= 11
5600
v= 11
5600 ( 98
5 h )1
2 t+ c
Hence, making h the subject t of the formula gives
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
h=( v
8.6963 )
2
dh
dt = v2 d
dt (8.6963103 t ) 2
=1.230105 h
b . At v¿ 0 , t=c
But at time t=0 ,the tank if full hence v=c
Since is given by π r2 h= 22
7 1.524=¿28.2857,
Hence the tank will be empty after 28.29 seconds.
Document Page
References
Autar, K., Egwu, K. & Duc, N., 2008. Numerical Methods with Applications. [Online]
Available at: http://nm.mathforcollege.com/topics/textbook_index.html
[Accessed 31 December 2018].
Dani, S., 2012. Ancient Indian Mathematics –. A Conspectus". Resonance. , 17(3), p. 236–246.
chevron_up_icon
1 out of 12
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]