Mechanical Engineering

Verified

Added on  2023/01/13

|23
|2597
|55
AI Summary

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Mechanical Engineering

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Table of Contents
Activity 1:........................................................................................................................................1
Activity 2.........................................................................................................................................7
Activity 3.......................................................................................................................................12
Activity 4.......................................................................................................................................15
Activity 5.......................................................................................................................................16
Activity 6.......................................................................................................................................17
Activity 7.......................................................................................................................................18
Document Page
Document Page
Activity 1:
a) Conversion of numbers into binary, hexadecimal, octal and decimal equivalents
(i) 10101101112
Solution:
Binary to decimal:
= 1 x 29 + 0 x 28 + 1 x 27 + 0 x 26 + 1 x 25 + 1 x 24 + 0 x 23 + 1 x 22 + 1x 21 + 1 x 20
= 512 + 0 + 128 + 0 + 32 + 16 + 0 + 4 + 2 + 1
= 69510
Binary to octal:
10101101112 = 25678
Binary to hexadecimal:
So,
10101101112 = 2B78
(ii) 53278
1

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Solution:
Octal to decimal:
= 5 x 83 + 3 x 82 + 2 x 81 + 7 x 80
= 5 x 512 + 3 x 64 + 2 x 16 + 7 x 1
= 279110
Octal to binary
53278 = 1010110101112
Octal to hexadecimal
53278 = 1010110101112
0111 = 7
1101 = D
1010 = A
So, 53278 = 7DA16
(iii) 429A16
Solution: A = 10
Hexadecimal to Octal:
429A16 =
4 – 0100
2 – 0010
9 – 1001
A – 1010
So, 100001010011010
Now, regrouping them –
100 – 4
001 – 1
010 – 2
011 – 3
010 – 2
So, 429A16 = 412328
Hexadecimal to Binary:
2
Document Page
429A16 = 1000010100110102
Hexadecimal to decimal:
429A = 4 x 163 + 2 x 162 + 9 x 161 + 10 x 160
= 4 x 4096 + 2 x 256 + 9 x 16 + 10 x 1
= 16384 + 512 + 144 + 10
= 1705010
(iv) 1087510
Solution:
Decimal to Octal:
Decimal No Operation Quotient Remainder Octal Result
10875 ÷ 8 = 1359 3 3
1359 ÷ 8 = 169 7 73
169 ÷ 8 = 21 1 173
21 ÷ 8 = 2 5 25173
So, 1087510 = 251738
Decimal to Hexadecimal:
Decimal No Operation Quotient Remainder Hexadecimal Result
10875 ÷ 16 = 679 11 B
679 ÷ 16 = 42 7 7B
42 ÷ 16 = 2 10 A7B
So, 1087510 = 2A7B
Decimal to Binary:
Decimal No Operation Quotient Remainder Binary Result
10875 ÷ 2 = 5237 1 1
5237 ÷ 2 = 2618 1 11
2618 ÷ 2 = 1309 0 011
1309 ÷ 2 = 654 1 1011
654 ÷ 2 = 327 0 01011
327 ÷ 2 = 163 1 101011
163 ÷ 2 = 81 1 1101011
81 ÷ 2 = 40 1 11101011
3
Document Page
40 ÷ 2 = 20 0 011101011
20 ÷ 2 = 10 0 0011101011
10 ÷ 2 = 5 0 00011101011
5 ÷ 2 = 2 1 101001111011
2 ÷ 2 = 1 0 10101001111011
So,
1087510 = 101010011110112
b) Add and multiple the following numbers
(i) 101110012 and 111010102
Solution:
Addition rules –
0 + 0 = 0
0 + 1 = 1 + 0 = 1
1 + 1 = 10
10111001
+ 11101010
110100011
Multiplication rules –
0 x 0 = 0
0 x 1 = 1 x 0 = 0
1 x 1 = 1
So, 10111001
x 11101010
1010100100011010
(ii) 21378 and 15418
Solution: Firstly, convert the numbers from octal into binary form –
21378 = 100010111112
15418 = 11011000012
Addition –
10001011111
+ 01101100001
4

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
11111000000
So, addition of 21378 and 15418 is 37008 (111110000002)
Similarly, multiplication of 21378 and 15418
10001011111
x 01101100001
11101100010011111111
So, multiplication of 21378 and 15418 is 35423778 (111011000100111111112)
(iii) B41E16 and 253B16
Solution:
Convert the hexadecimal numbers into binary
B41E16 = 1011010000011110
253B16 = 10010100111011
1011010000011110
+ 10010100111011
11000110101011001
So, addition of B41E16 and 253B16 is18D59
Multiplication:
1011010000011110
x 10010100111011
11010001100011101100011101010
So, multiplication of B41E16 and 253B16 is 1A31D8EA16
(iv) 356210 and 264310
Solution:
Convert decimal numbers into binary numbers as –
5
Document Page
356210 = 1101111010102
264310 = 1010010100112
Addition of both numbers –
110111101010
+ 101001010011
1100000111101
So, addition of 356210 and 264310 is 620510 (11000001111012)
Now, multiplication –
110111101010
x 101001010011
100100110100100000001100
So, multiplication of 356210 and 264310 is 965223610 (11000001111012)
6
Document Page
Activity 2
(a) Given,
Resistance of resistor R = 12 Ω
Inductance of coil L = 0.1 H
Capacitance C = 150 μF = 150 x 10-6 F
Amplitude of AC Voltage Source Um = 220 V
Resistor, coil and capacitor are connected in series
To determine Phase angle ø?
Current Flowing in the circuit Im ?
Figure 1: Phasor Diagram
(i) Impedance Z can be calculated by taking rectangular triangle as shown in above phasor
diagram in following way –
7

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Using Pythagorean Theorem –
Z2 = R2 + (XL – XC)2
Frequency (f) = 1 / 2 √LC
= 41.09
Here, XL = ωL
= 2fL
= 2 x 41.09 x 0.1 = 25.80 Ω
and XC = 1/ ωC
= 1/ 2fC
= 1/ 2 x 41.09 x 150 x 10-6
= 25.84 Ω
So, Impedance in rectangular form –
Z = R + j (XL – XC)
= 12 + j (25.80 – 25.84)
= 12 – j 0.4 Ω
Impedance in polar form –
Z = 12.01 (-1.91 ) Ω
(ii) Impedance at resonance,
At resonance XL = XC
Therefore,
Impedance at resonance in rectangular form
Z = R + j. 0
= 12 Ω
Impedance at resonance in polar form
Z = 12 (0 ) Ω
(iii) Current Flowing in rectangular form –
I = V / Z
= 220 / 12 – j 0.4
In polar form –
8
Document Page
I = V / Z
= 220 / 12.01 (-1.91 )
(b) Given,
Resistance of resistor R1 = 1k Ω, R2 = 3k Ω, R3 = 5k Ω,
Inductance of coil L = 100 mH = 10 x 10-3 H
Capacitance C = 50 μF = 50 x 10-6 F
Amplitude of AC Voltage Source Um = 240 V
Resistor, coil and capacitor are connected in series
To determine Total Impedance (Z)?
Admittance (Y)
Current Flowing in the circuit Im ? Phase relative to applied voltage ?
Firstly,
As series is connected in parallel, therefore,
1 = 1 + 1 + 1
R R1 R2 R3
= 1 + 1 + 1
1 3 5
= 23/ 15
Or, R = 15/23 = 0.652k Ω = 652 Ω
Frequency (f) = 1 / (2 √LC)
= 71.18
XL = ωL
= 2fL
= 2 x 71.18 x 100 x 10-3 = 44.70 Ω
and XC = 1/ ωC
= 1/ 2fC
= 1/ 2 x 71.18 x 50 x 10-6
= 44.74 Ω
So, Impedance in the circuit can be calculated by –
Z = 1 .
9
Document Page
1 + 1 - 1 2
R2 XL XC
= 1 .
1/6522 + (1/44.70 – 1/44.74)2
= 653.59 Ω
Admittance (Y) = 1 / Z = 0.0015
Current (I) = V/Z
= 240 / 653.59
= 0.367A
Impedance in rectangular form –
1 = 1 + 1 + 1
Z Z1 Z2 Z3
Here,
Z1 = R1 + j (XL – XC)
= 1000 + j (44.70 – 44.74)
= 1000 – 0.4j
1 = 1000 + 0.4j
Z1 1000000.16
Z2 = R2 + j (XL – XC)
= 3000 + j (44.70 – 44.74)
= 3000 – 0.4j
1 = 3000 + 0.4j
Z2 9000000.16
Z3 = R3 + j (XL – XC)
= 5000 + j (44.70 – 44.74)
= 5000 – 0.4j
1 = 5000 + 0.4j
Z1 25000000.16
So,
1 = 1 + 1 + 1
10

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Z Z1 Z2 Z3
= 1000 + 0.4j + 3000 + 0.4j + 5000 + 0.4j
1000000.16 9000000.16 25000000.16
11
Document Page
Activity 3
a) Given, Z1 = 1 + j2
Z2 = 4 – j3
Z3 = -5-j
Solution:
Polar form representation of above complex numbers are –
General polar form of z = (a + jb)
Z = r (cos Ɵ + sin Ɵ)
Where,
r = √a2 + b2
and, Ɵ = tan-1 (b/a)
So, above complex numbers can be represented in following way –
Z1 = 1 + j2
r = √12 + 22 = √5
while, Ɵ = tan-1 (2/1) ≈ 1.11 radian
so,
Z1 = √5 (cos 1.11 + sin 1.11)
Z2 = 4 – j3
r = √42 + 32 = 5
while, Ɵ = tan-1 (-3/4) ≈ 2.50 radian
so,
Z2 = 5 (cos 2.50 + sin 2.50)
Z3 = -5 – j
r = √52 + 12 = √26
while, Ɵ = tan-1 (1/5) ≈ 0.19 ≈ -2.95 radian
so,
Z1 = √26 (cos 2.95 – sin 2.95)
12
Document Page
b) Z = Z1 + Z1. Z2 – Z3/Z1 in rectangular form
Solution:
Z1. Z2 = (1 + j.2) (4 – j3)
= 4 – j.3 + j.8 – j2 6
= 4 – j.3 + j.8 + 6
= 10 + 5j
Z3/Z1 = (– 5 – j) / (1 + j.2)
Rationalise the denominator –
Z3 = -5 – j x 1 – j.2
Z1 1 + j.2 1 – j.2
So, = (-5 + 10.j – j – 2)
1 – (-2)
= -7 + 9j = -7/3 + j.3
3
Now, Z = Z1 + Z1. Z2 – Z3/Z1
= (1 + j.2) + (10 + 5j) – 7/3 + j.3
= 1 + 10 + 7/3 + j.2 + 5.j – j.3
Z = 40/3 + j.4 (in rectangular form)
c) (-2.5 + j4.2) into exponential form
Complex No. in exponential form –
Z = r e
Here, r = √a2 + b2
and, Ɵ = tan-1 (b/a)
so, exponential form of (-2.5 + j4.2) can be calculated in following manner –
r = √(-2.5)2 + (4.2)2
= √ 6.25 + 1764
= √1780.25 = 42.19
and, Ɵ = tan-1 (-4.2/2.5) ≈ -1.03 or, 2.11
so, Z = 42.19 ej.2.11
13

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
d) Z = 4 e1.5 -j.2
Solution: Z = 4 . e1.5 . ej.2
= 4 x 4.48 . ej.2
= 17.92 ej.2
So, in polar form –
Z = r (cos Ɵ + sin Ɵ)
On comparing from above equation, r = 17.92 and Ɵ = 2
So, Z = r (cos Ɵ + sin Ɵ)
= 17.92 (cos 2 + sin 2)
14
Document Page
Activity 4
De Moivre’s Theorem to determine two square roots of (3 – j4)
Solution: Firstly, express given complex number into polar form as –
Z = (3 – j4)
Here, Absolute value r = √a2 + b2
= √32 + 42 = √25 = 5
and, Argument Ɵ = tan-1 (-4/3) ≈ -53
so, Z = r1/n (cos Ɵ/n + sin Ɵ/n)
For first square root, at r = 2
Z = 51/2 (cos 53 /2 – j sin 53 /2)
= 51/2 (cos 26.5 – j sin 26.5)
= 2.23 (0.89 – j 0.98)
Z = (1.98 – j 0.98)
To determine second square root of given complex number, add 360 to Ɵ
Z = 51/2 (cos 413 /2 – j sin 413 /2)
= 51/2 (cos 206.5 – j sin 206.5)
= 2.23 (-0.89 + j 0.98)
Z = (-1.98 + j 0.98)
15
Document Page
Activity 5
De Moivre’s Theorem to prove sin4 Ɵ = ⅛ (cos 4Ɵ – 4 cos 2Ɵ + 3)
Solution: Using De Moivre’s Theorem,
2 j sin Ɵ = (z – 1/z)
or,
(2 j sin Ɵ)4 = (z – 1/z)4
using binomial expression –
8 sin4 Ɵ = (z4 + 1/z4) – 2 (z2 + 1/z2) + 3
taking, (z + 1/z) = 2 cos Ɵ
8 sin4 Ɵ = cos 4 Ɵ – 2 (2cos 2Ɵ) + 3
or,
sin4 Ɵ = ⅛ (cos 4Ɵ – 4 cos 2Ɵ + 3) Hence Proved.
16

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Activity 6
Calculate the determinant of
3.1 2.4 6.4
-1.6 3.8 -1.9
5.3 3.4 -4.8
Solution:
Let A = a11 a12 a13
a21 a22 a23
a31 a31 a33
then, value of determinant A can be calculated as
A = a11 ( a22 x a33 – a23 x a31) – a12 ( a21 x a33 – a23 x a31) +a13 (a21 x a31 - a22 x a31)
So,
3.1 2.4 6.4
-1.6 3.8 -1.9
5.3 3.4 -4.8
So,
A = [ 3.1(3.8x-4.8 – (-1.9x3.4)) –2.4 (-1.6x-4.8 – (-1.9x5.3)) + 6.4 (-1.6x3.4 – 3.8x5.3) ]
= 3.1 (-11.78) – 2.4 (17.75) + 6.4 (-25.58)
= -242.49 Answer.
17
Document Page
Activity 7
Linear Equations –
5T1 + 5T2 + 5T3 = 7.0
T1 + 2T2 + 4T3 = 2.4
4T1 + 2T2 = 4.0
Then Augmented matrix of above linear equation -
5 5 5 T1 = 7.0
A = 1 2 4 T2 = 2.4
4 2 0 T3 = 4.0
Now, using Gaussian Elimination method,
5 5 5 7.0
1 2 4 2.4
4 2 0 4.0
Taking row matrix formula –
R1 →- R 1
-1 -1 -1 -1.4
1 2 4 2.4
4 2 0 4.0
R2 → R2 + R1
-1 -1 -1 -1.4
0 1 3 1.0
4 2 0 4.0
R3 → ½ R3
-1 -1 -1 -1.4
0 1 3 1.0
2 1 0 2.0
R1 → R1 + R3
1 0 -1 0.6
0 1 3 1.0
2 1 0 2.0
18
Document Page
R3 → R3 – R1
1 0 -1 0.6
0 1 3 1.0
1 1 1 1.4
R3 ↔ R1
1 1 1 1.4
0 1 3 1.0
1 0 -1 0.6
R1 → R1 – R2
1 0 -2 0.4
0 1 3 1.0
1 0 -1 0.6
R2 → R2 + R1
1 0 -2 0.4
0 1 1 1.4
1 0 -1 0.6
R3 → R3 – R1
1 0 -2 0.4
0 1 1 1.4
0 0 1 0.2
R1 → R1 +2 R3
1 0 0 0.8
0 1 1 1.4
0 0 1 0.2
R2 → R2 – R3
1 0 0 0.8
0 1 0 1.2
0 0 1 0.2
So, T1 = 1.0 , T1 = 1.2 , T3 = 0.2
19

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
20
1 out of 23
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]