This text covers various topics related to Mechanical and Machine Dynamics, including equations of motion, balancing, and natural frequency of systems. It also includes examples and solutions to problems related to these topics.
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
Running head: MECHANICAL AND MACHINE DYNAMICS1 Student Name: Name of Institution:
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
MECHANICAL AND MACHINE DYNAMICS2 Mechanical and Machine Dynamics Task 1.CCW-Counter clockwise A־ω Au+ω 35° 15° Au¿0.165 Au=(0.165mm, 15°ccw ) where ccw is counter clockwise Auw=( 0.225, 35°ccw) Aw= ((Au2+A2u+w-2AuAu+wcos(∅−θ)¿¿ ¿¿=0.1735mm w0=originalimbalance=(Au Aw)w=(0.165 0.1735)×50=47.5504g ∝=cos−1¿¿)=cos−1(0.1652+0.17352−0,2252 2×0.165×0.1735)=83.2775° Which is83.2775θcounter clockwise. Flywheel will be stable if a weight of 42.5504g is added at 83.2775 counter clockwise from the place of the experimental weight or¿¿)=38.2775 clockwise Task 2 LetWc=2Kg,WD=3Kg,WE=2Kg
MECHANICAL AND MACHINE DYNAMICS3 rc=50mm,rD=75mm,rE=25mm θc=90θ,θD=220θ,θE=−30θLetWA,rA,θA∧WG,rG,θGdenote the weights added in planes A and G respectively static balancing; Wcrccosθ+WDrDcosθD+WErEcosθE+WGrGcosθG+WArAcosθA=0 WGrGcosθG+WArAcosθA=6.2136(1) WGrGsinθG+WArAsinθA+WCrCsinθC+WErEsinθE+WDrDsinθD=0 WGrGsinθG+WArAsinθA=5.2136(2) Dynamic balancing, we take moments about the left bearing about plane B: WCrC∝CcosθC+WDrD∝DcosθD+WErE∝EcosθE+WArA∝AcosθA+WGrGcosθG ¿−16WArAcosθA+88WGrGcosθG=201.408(3) WCrC∝CsinθC+WDrD∝DsinθD+WErE∝EsinθE+WA+WGrG∝GsinθG=0 =−16WArAsinθA+88WGrGsinθG=372.544(4) Equation (1) and (2) results (−16×6.594)+104×(WGrGcosθG)=201.48 WGrGcosθG=2.9511(5) Equation (2) and (4) gives (−16×5.2136)+104WGrGsinθG=372.544 WGrGsinθG=4.3842(6) Equation (5) and ( 6) give (2.95112+4.38422) 1 2=5.2849mmAndθG=tan−1(4.3842 2.9511¿)=56.054¿( 7) Equation (1), (2) and (7) yields ; WArAcosθA=6.594−5.2849cos56.0549=3.649∧¿WArAsinθA=5.2136−5.2849sin56.0549=0.9007¿ (8)
MECHANICAL AND MACHINE DYNAMICS4 Equation (8) provide WArA=(3.64292+0.90072) 2 =3.7526Kg∧θA=tan−1(¿0.9007 3.6429)=13.8877θ¿ If balancing weight is placed at a radial distance of 50mm in place A and G. We haverG=rA=50mm∧thusWA=1.8763Kg,θA¿13.8877θWG=2.645Kg,θG=56.0549θ Task 3 balanced Primary forces are given by the following equation Fxp=∑ i=1 6 (Fx)pi=∑(Mp+Mc)irω2cos(ωt+αi)(1) Fyp=∑ i=1 6 (Fy)pi=∑(−Mc)irω2sin(ωt+αi)(2) unbalanced Secondary force is given by Fxs=∑ i=1 6 (Fx)si=∑(Mp)i r2ω2 lcos(2ωt+2αi)(3) Unbalanced primary and secondary moments are given by (Ms)p=∑ i=1 6 (Fx)pili(4) (Ms)s=∑ i=1 6 (Fx)sili(5) (Mx)p=∑ i=1 6 (Fy)pili(6) (Mp+Mc)rω2 ∑ i=1 6 cos(αi)=(Mp+Mc)rω2¿ Equation (2) gives
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
MECHANICAL AND MACHINE DYNAMICS5 −Mcrω2 ∑ i=1 6 sin(αi)=−Mcrω2(2sin(0)+2sin120+2sin240)=0 Equation (3) results into Mpr2ω2 l∑ i=1 6 cos2αi=Mpr2ω2 l(2cos(0)+2cos240+2cos480)=0 Equation (4) results into; (Mp+Mc)rω2 ∑ i=1 6 licos(αi)=(Mp+Mc)rω2α¿ Equation (5) results into Mpr2ω2 l∑ i=1 6 licos2αi=Mpr2ω2α l(cos(240)+2cos480+3cos480+4cos240+5cos0)=0 Equation (6) yields: −Mcrω2 ∑ i=1 6 lisin(αi)=−Mcrω2α(sin(120)+2sin240+3sin240+4sin120+5sin0)=0 Thus, engine is completely force and moment balanced. Task 4 a)Equation of motion: j0¨θ1+2k1θ1−k1θ2=0 2j0¨θ2−k1θ1+k1θ1….. (1) Rearranging and substituting in the harmonic solution
MECHANICAL AND MACHINE DYNAMICS6 θi(t)=φicos(ωt+∅¿);i=1,2,3¿(2) It brings frequency equation 2ω4j0 2+5ω2j0kt+kt 2=0(3) The solution of equation (3) gives the natural frequency b)Mass of the car =m, radius of gyration is r =Jomr2 Equation of the motion; yf(yr)= ground displacements of front wheels, downwards for motion along x m¨x+x(kf+kr)+θ(krl2−kfl1)=kf For motion alongθ; J0¨θ+x(l2kr−l1kf)+θ(krl2 2+kfl2 1)=(krl2yr−kfl1yf) Where ground motions can be expressed;yf(t)=ysinωt. c)using newton’s second law of motion: For massm2 m2¨x2+c2¿(1) For massm1 m1¨x1+c2(˙x1+˙y)+k1(x1+y)−c1(˙x2˙−x1)−k2(x2−x1)=0(2) Equation (1) and (2) can be rewritten as; m1¨x1+˙x1(l1+l2)−˙x2c2+x1(k1+k2)−x2k2=c1˙y+k1y(3) m2¨x2+˙x2c2−˙x1c2+x2k2−x1k2=0(4)
MECHANICAL AND MACHINE DYNAMICS7 Equations (3) and (4) can be expressed in matrix form as: [m10 0m2](¨x1 ¨x2)+[c1+c2−c2 −c2c2](˙x1 ˙x2)+[k1+k2−k2 −k2k2](x1 x2)=[c1˙y+k1y 0](5) d)Usingx1∧x2, equation of motion of piston m1¨x1+(k1+k2)x1−psinθ=0(1) Equation of the motion of the pendulum bob m2¨x2+psinθ=0(2) In equation (1) and equation (2)sinθcan be expressed assinθ≈θ=x2−x1 l(3) This for a small angleθ. For the vertical equilibrium of the massm2 p=m2gcosθ≈m2g(4) Substituting equation (3) and (4) in (1) and (2) yields: m1¨x1+(k1+k2)x1−m2g(x2−x1 l)=0(5) m2¨x2+m2g(x2−x1 l)=0(6) Assuming harmonic solutions as x1(t)=x1cos(ωt+Φ)(7a) x2(t)=x2cos(ωt+Φ)(7b) Equations (5) and (6) becomes [−m1ω2+(k1+k2)+(m2g l)y]x1−m2g lx2=0(8) −m2g lx1+[−m1ω2+m2g l]x2=0(9) By setting the determinants of the coefficient matrix ofx1andx2, we obtain the frequency equation as
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
MECHANICAL AND MACHINE DYNAMICS8 |−m1ω2 (k1+k2)+(m2g l) −m2g l−m2ω2+m2g l|=0(10) i.em1m2ω4−m1m2gω2 l+m2g l(k1+k2+m2g l)=0(11) The roots of the equation (11) give the natural frequency of the system. e)Taking moments about 0 and massm1 m1l1 2¨θ1=−ω1(l1sinθ1)+αsinθ2(l1cosθ1)−αcosθ2(l1sinθ1)=−ω1l1θ1+ω2l1(θ2−θ¿¿1)❑¿ (1) Assuming thatα≈ω2 m2l2 2¨θ2+m2l2l1¨θ1=−ω2(l2sinθ2)=−ω2l2θ2(2) Using the relationsθ1=x1 l1 andθ2=x2−x1 l2 equations (1) and (2) becomes m1l1 2¨x1+ (ω1+ω2(l1+l2 l2))x1−ω2l1x2 l2 =0(3) m2l2¨x2+ω2x1+ω2x2=0(4) Whenm1=m2=m,l1=l2=landω1=ω2=mgequations (3) and (4) gives ml¨x1+3mgx1−mgx2=0(5a) ml¨x2−mgx1+mgx2=0(5b) For harmonic motionxi(t)=xicosωt; wherei=1,2,3,…equation (5) becomes −ω2mlx1+3mgx1−mgx2=0 −ω2mlx2−mgx1+mgx2=0(6) From which the frequency equation can be obtained as ω4m2l2−(4m2lg)ω2+2m2g2=0
MECHANICAL AND MACHINE DYNAMICS9 LetR1,R2∧R3be the restoring forces in the spring. Equations of motion ot massminx andydirections are: m¨x=∑ i=1 3 Ricosαi(1) m¨y=∑ i=1 3 Risinαi(2) WhereRi=−ki(xcosαi+ysinαi)(3) Equations (1) to (3) gives m¨x+∑ i=1 3 ki(xcos2αi+ysinαicosαi)=0(4) m¨y+∑ i=1 3 ki(xsinαicosαi+ysin2αi)=0(5) Forα1=45°,α2=135°,α3=270°andk1=k2=k3=k, equations (4) and (5) m¨x+kx=0(6) m¨y+2ky=0(7) These two equations are uncoupled for harmonic motion. x(t)=xcos(ωt+Φ) y(t)=ycos(ωt+Φ) And henceω1=√k mfor motion in x-direction. ω2=√2k mfor motion in the y-direction. Natural modes are given by x(t)=xcos(√k mt+Φ1) y(t)=ycos(√2k mt+Φ2) Wherex,y,Φ1∧Φ2can be determined by initial conditions.
MECHANICAL AND MACHINE DYNAMICS 10 Task 5. (a)Equation of motion; Assume that θ1, θ2are small. Moment equilibrium eqns of the masses about P and Q: ml2¨θ+mglθ1+kd2¿) =0 ……..(1) ml2¨θ−mgl2−kd2(θ1+θ2)=0…………(2) (b)Natural frequencies and mode shapes. Assume: Harmonic motion with; θj(t)=φjcos(ωt−∅¿);j=1,2,3……..(3)¿ Whereφ1∧φ2are the amplitudes ofθ1∧θ2respectively, ωisthenaturalfrequency,∧∅isthephaseangle: Using equation (3), equation (1) and equation (2), they can be expressed in matrix form as; ω2ml2 [10 01]φ1 φ2 +[mgl+kd2−kd2 −kd2mgl+kd2]φ1 φ2 =0 0………….(4) Frequency equation: [ω2ml2+mgl+kd2−kd2 −kd2−ωml2+mlg+kd2]=0………..(5) or ω4−ω2+ (2g l 2kd2 ml2)+g2 l2+2gkd2 ml2=0………(6) By substituting forω1 2∧ω2 2in to equation (4), we obtain φ2 φ1 (1) =1∨φ1 φ2 (1) =1 1φ1 (1)andφ2 φ1 (2) =−1∨φ1 φ2 (2) =1 −1φ1 (2) Thus, the motion of the masses in the two modes is given by;⃗ θt (1)(t)=¿41 (1)=φ1 (1)1 1cos(ω1t−∅1¿)¿…… (7)⃗ θt (2)=φ1 (2)1 −1(cosω2+∅2)…………..(8) c) Free vibration response. Using linear superposition of natural modes, the free vibration response is given by;
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
MECHANICAL AND MACHINE DYNAMICS 11⃗ θ(t)=C1⃗θ(1)(t)+C2⃗θ(2)(t)………….(9) By usingC1=C2=1, without loss of originality (7) and (9) lead to ; θ1(t)=φ(1) 1cos¿+φ1 (2)cos¿…..(10) θ2(t)=φ(1) 1cos¿-φ1 (2)cos¿…..(11) Whereφ1 (1),∅1,φ1 2and∅2are constants to be determined from initial conditions. Where θ1(0)=a,θ2(0)=0,˙θ1(0)=0∧˙θ2(0)=0, eqn (10) and (11) yield a=φ1 (1)cos∅1+φ1 (2)cos∅2 0=φ1 (1)cos∅1−φ1 (2)cos∅2 σ=−ω1φ1 (1)sinθ1−ω2φ1 2sin∅2…(12) σ=−ω1φ1 (1)sinθ1+ω2φ1 2sin∅2 Eqn (12) can be solved forφ1 (1),∅1,φ1 2∧∅2to obtain ∅1(t)=acosω2−ω1 2t.cosω2+ω1 2t …..(13) ∅2(t)=asinω2−ω1 2t.sinω2+ω1 2t Task 6. (a)The sheer building can be modeled as shown below. k2(x2−x1)k3(x3−x2)k4(x4−x3) F1(t)F2(t)F3(t)F4(t)Rem1¨x1 ---- Gsm2¨x2 ---- Jhm3¨x3 ---- Bsm4¨x4 ----
MECHANICAL AND MACHINE DYNAMICS 12 c2(˙x2−˙x1)c3(˙x3−˙x2)c4(˙x4−˙x3) (a)Equations of motion from the above diagram; m1¨x1+c1˙x1+k1x1−c2(˙x2−˙x1)−k2(x2−x1)=F1(t) m2¨x+c2(˙x2−˙x1)+k2(x2−x1)−c3(˙x3−x2)−k3(x3−x2)=F2(t) m3¨x3+c3(˙x3−˙x2)+k3(x3−x2)−c4(˙x4−˙x3)−k4(x4−x3)=F3(t) m4¨x4+c4(˙x4−˙x3)+k4(x4−x3)=F4(t)…………………(1) (b)Langrage’s equations are; d dt(∂T ∂Qj)−∂K ∂Qj+∂P ∂Qj+∂R ∂Qj=Qj………………(2) Where K is the kinetic energy, P is the potential energy and R is the Rayleigh’s dissipation function,Qj=jth, generalized coordinate. K=1 2(m1˙x1 2+m2˙x2 2+m3˙x3 2+m4˙x4 2) P=1 2¿ R=1 2¿ Qj=Mj;j=1,2,3,4……. UsingQj=xj;j=1,2,3,4………. The application equation (2 yields the equation of motion in the equation (1).