ProductsLogo
LogoStudy Documents
LogoAI Grader
LogoAI Answer
LogoAI Code Checker
LogoPlagiarism Checker
LogoAI Paraphraser
LogoAI Quiz
LogoAI Detector
PricingBlogAbout Us
logo

Multivariate Calculus

Verified

Added on  2023/06/13

|9
|1329
|272
AI Summary
This article covers solved problems related to Multivariate Calculus including finding mass, volume, and surface area. It also includes solved problems related to double integrals and line integrals.

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Running head: MULTIVARIATE CALCULUS 1
Multivariate Calculus
Name
Institution

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
MULTIVARIATE CALCULUS 2
Multivariate Calculus
Question 1
Parabolic cylinder z=4x2
Planes x=0 , y=6 , z=0
The density of the body is 1. Therefore, mass=volume
z=4x2 =0 , 4=x2 , x=2
0 x 2, 0 y 6 ,0 z 4x2
Mass=volume=
0
2

0
6

0
4 x2
dzdydx

0
4 x2
dz= [ z ] 0
4 x2
=4z2

0
6
4x2 dy = [ (4x2 ) y ] 0
6
=6(4x2)

0
2
6 (4x2 )dx=6 [(4 x x
3
3
) ]0
2
6 (4 ( 2 ) 2
3
3
)=32
Question 2
Since the double cone is twice a single cone, we work with the region R( Z >0) then double the
result. The region formed is shown in the figure below.
Document Page
MULTIVARIATE CALCULUS 3
We know, r2=x2 + y2 + z2
¿ 1 r2 4 we get 1 r 2.
0 θ 2 π ,0 π
4 ,z=rcos

V

z2 dv=
1
2

0
2 π

0
π
4
r4 cos2 sin d dθdr
Let cos =u , d = 1
sin du

0
π
4
r 4 cos2 sin d =¿ r4

0
π
4
u2 sin ( 1
sin du)¿
¿r 4

0
π
4
u2 du=r4
|u3
3 |0
π
4
Document Page
MULTIVARIATE CALCULUS 4
r 4
| u3
3 |0
π
4
=r4
| cos3
3 |0
π
4
= r 4
3 ( 1 1
2 2 )

0
2 π
r4
3 ( 1 1
2 2 )
¿ r4
3 (1 1
2 2 )
0
π
4

¿ r4
3 (1 1
2 2 )|θ |0
2 π
= 2 π r4
3 (1 1
2 2 )

1
2
2 π r 4
3 ( 1 1
2 2 ) dr
¿ 2 π
3 ( 1 1
2 2 )
1
2
r 4 dr
¿ 2 π
3 (1 1
2 2 )|r5
5 |1
2
¿ 2 π
3 (1 1
2 2 ) (32
5 1
5 )
¿ 2 π
3 ( 1 1
2 2 ) ( 31
5 )
¿ 62 π
15 ( 1 1
2 2 )
For a double cone

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
MULTIVARIATE CALCULUS 5
¿ 2 × 62 π
15 ( 1 1
2 2 )
¿ 124 π
15 (1 1
2 2 )=16.7885
Hence,

V

z2 dv=16.7885
Question 3
Part i

C

xydx +2 x2 ydy x=et , y=et
dx=et dt , dy=et dt

C

xydx +2 x2 ydy=
t=0
2
et (et )et dt +2 ( et ) 2
et (et dt )
¿
t =0
2
( et +2 t ) dt(2 e2 t t t )dt
¿
t =0
2
( et ) dt ( 2 e0 ) dt
¿1
t =0
2
( et +2 ) dt =|et +2 t|0
2
=e2+2 ( 2 ) =e2+ 4
¿ 11.389
Document Page
MULTIVARIATE CALCULUS 6
Part ii

C
2 xy
1+ 2 y ds , x=t , y= t 2
2
dx=1 dt , dy= 2t
2 =t
dx2=(1 dt)2=dt2
dy2=(tdt )2=t2 dt2
ds= dx2 +dy2= dt2+ t2 dt2
¿ dt2( 1+t2 )= (1+t2)dt

C
2 xy
1+ 2 y ds=
t=0
t=1 2(t)( t2
2 )
1+ 2(t2
2 )
× (1+t2 )dt
¿
t =0
t =1
t3
1+t 2 × (1+t2) dt

t =0
t =1
t3 dt=|t4
4 |0
1
= 1
4
Question 4
r ( t )=cost ~i+sint ~j+t ~
k
F ( x , y , z )= y ~
i+ x ~
j+¿5
~
k
F . d r = F (r ( t ) ) . r (t)'
Document Page
MULTIVARIATE CALCULUS 7
r (t )'= d
dt (cost ~
i+ sint ~
j+t ~
k)
r (t )' =sint ~
i+cost ~
j+1 ~
k
x=cost , y=sint , z =t
Given that F ( x , y , z )= y ~
i+x ~
j+¿5
~
k
F ¿
F ( r ( t ) ) .r ( t ) '= ( sint ~
i+cost ~
j+5 ~
k ) .(sint ~
i+cost ~
j+1 ~
k)
¿sin2 t+cos2 t +5=cos2 tsin2 t+5
But, using the identity cos2 tsin2 t=cos (2 t)¿
F ( r ( t ) ) .r ( t ) '=cos ( 2 t ) +5
F . d r = F (r ( t )) . r (t)'=(cos ( 2 t )+5)dt
¿
t =0
t =1
(cos ( 2 t ) +5)dt
¿| 1
2 sin ( 2 t ) +5 t|0
1
=0.4546+5=5.4546
F . d r =5.4546
Question 5

S

( x+ z ) ds, y2 +z2=9 ( first octant ) . Planes , x=0 , x=4

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
MULTIVARIATE CALCULUS 8
For the given surface we use θx as the parameters. The parametric equations are:
x=x , y =rcosθ , z=rsinθ
The volume lies in the first octant which means that θ lies between 0 and π
2
y2 + z2=9
r2 cos2 θ+r2 sin2 θ=9
r2 ( cos2 θ+sin2 θ ) =9
r2=9 ,r =3
x=x , y =3 cosθ , z=3 sinθ
Therefore, 0 θ π
2 0 x 4
rθ ×r x=
| i j k
x / θ y / θ z /θ
1 0 0 |
¿
|i j k
0 3 sinθ 3 cosθ
1 0 0 |
¿ j (3 cosθ )+ k ( 3 sinθ )=3 cosθ j +3 sinθ k
|rθ ×r x|= 9 ¿ ¿
We have,
Document Page
MULTIVARIATE CALCULUS 9

S

( x+z ) ds=
D

( x + z ) |rθ ×r x| dA
¿
0
π
2

0
4
( x+ z ) ( 3 ) dxd θ
¿ 3
0
π
2

0
4
( x+3 sinθ ) dxdθ
¿ 3
0
π
2
| x2
2 +3 ( x ) sinθ|0
4

¿ 3
0
π
2
( 42
2 +3 ( 4 ) sinθ )
¿ 3
0
π
2
( 8+12 sinθ )
¿ 3 |8 θ12 cosθ|0
π
2
¿ 3 ( 8 ( π
2 )12 cos ( π
2 ) 8 ( 0 ) +12 cos 0 )
¿ 3(4 π +12)
¿ 12 π +36=73.699 units
1 out of 9
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]