SEO Expert for Desklib
VerifiedAdded on 2023/03/30
|12
|2288
|253
AI Summary
Desklib is an online library that provides study material including solved assignments, essays, dissertations, and more. It offers a wide range of content for various subjects and courses. Whether you need help with assignments or want to explore different topics, Desklib has you covered.
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
Name…………………………………………………………. Personal Number……………
Problem 1
Solution
Suppose X maps W to R ,meaning the w ∈ Rand also X ( w)∈ R
Now Y(w)=X |w|3 also maps¿ Y : W → R
Now themeasure for cumulative distribution function will be as below
F ( x )=P ( X ≤ x )
We also consider y> 0
FY ( y )=P (Y ≤ y )
¿ P (|x|3 ≤ y )
¿ P(− 3
√ y )≤ X ≤− 3
√ y
Now
¿ FX (−3
√ y )−FX (−3
√ y )+P(X =−3
√ y)
since X is a random variable ,the |x|3 is alsoa random variable on the same space .
Problem 2
Part a
Solution
Using the formula∬
−∞
∞
f ( x , y ) dydx
E ( x , y ) =∫
0
2
∫
0
2
c ( y2 + xy ) dydx
∫
0
2
∫
0
2
c ( y2 + xy ) dydx=1
Problem 1
Solution
Suppose X maps W to R ,meaning the w ∈ Rand also X ( w)∈ R
Now Y(w)=X |w|3 also maps¿ Y : W → R
Now themeasure for cumulative distribution function will be as below
F ( x )=P ( X ≤ x )
We also consider y> 0
FY ( y )=P (Y ≤ y )
¿ P (|x|3 ≤ y )
¿ P(− 3
√ y )≤ X ≤− 3
√ y
Now
¿ FX (−3
√ y )−FX (−3
√ y )+P(X =−3
√ y)
since X is a random variable ,the |x|3 is alsoa random variable on the same space .
Problem 2
Part a
Solution
Using the formula∬
−∞
∞
f ( x , y ) dydx
E ( x , y ) =∫
0
2
∫
0
2
c ( y2 + xy ) dydx
∫
0
2
∫
0
2
c ( y2 + xy ) dydx=1
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
∫
0
2
c [ y3
3 + x y2
2 ] 3
0 dx=c ¿ ¿
¿ c [ 9 x+ 9
4 x2
] 2
0=c [ 18+ 9 ] =1
27 c=1
therefore , c= 1
27
Part b
Solution
Given that ∬
−∞
∞
f ( x , y ) dydx
we will thenfind theindividual marginal functions of X∧Y .
now the marginal density for X will be given as
f ( x ) =∫
−∞
∞
f ( x , y ) dy
¿∫
0
3
y2+ xy
27 dy
¿ 1
27 [ y3
3 + x y2
2 ] 3
0= 1
27 [ 9+ 9
2 x ]
¿ 1
27 ( 9 )+ 1
27 ( 9
2 )x= 1
3 + 1
6 x
¿ 2+ x
6
Therefore , f ( x )= 2+ x
6
Also,
f ( y ) =∫
−∞
∞
f ( x , y ) dx
0
2
c [ y3
3 + x y2
2 ] 3
0 dx=c ¿ ¿
¿ c [ 9 x+ 9
4 x2
] 2
0=c [ 18+ 9 ] =1
27 c=1
therefore , c= 1
27
Part b
Solution
Given that ∬
−∞
∞
f ( x , y ) dydx
we will thenfind theindividual marginal functions of X∧Y .
now the marginal density for X will be given as
f ( x ) =∫
−∞
∞
f ( x , y ) dy
¿∫
0
3
y2+ xy
27 dy
¿ 1
27 [ y3
3 + x y2
2 ] 3
0= 1
27 [ 9+ 9
2 x ]
¿ 1
27 ( 9 )+ 1
27 ( 9
2 )x= 1
3 + 1
6 x
¿ 2+ x
6
Therefore , f ( x )= 2+ x
6
Also,
f ( y ) =∫
−∞
∞
f ( x , y ) dx
¿ 1
27 ∫
0
2
f ( y2+ xy ) dx
¿ 1
27 [ x y2+ x2 y
2 ] 2
0= 1
27 [ 2 y2+2 y ]
Therefore , f ( y ) = 2 y2+ 2 y
27
¿ the above obtained solutions , we can observe that f ( x , y ) ≠ f ( x ) f ( y )
Now we can confidently concludethat X ∧Y are not independent .
We now want ¿ calculte the xpected values ;
Expectedd values of 3 X −2 y is given by E [ 3 X −2Y ] =3 E [ X ] −2 E [ Y ] … … . A
Expected values of X will be givenby
E [ X ] =∫
−∞
∞
xf ( x ) dx
¿∫
0
2
1
6 x ( 2+x ) dx= 1
6 ∫
0
2
2 x + x2 dx
¿ 1
6 [x2 + x3
3 ]2
0= 1
6 (4+ 8
3 )=10
9
Therefore , E ( x ) =10
9
Also ,
E [ Y ] =∫
−∞
∞
yf ( x , y ) dy
¿∫
0
3
y ( 2 y2 + y
27 )dy = 2
27 ∫
0
3
( y3 + y2 ) dy
¿ 2
27 [ y4
4 + y3
3 ]3
0= 2
27 [ 81
4 + 27
3 ]=13
6
Therefore , E [ Y ] =13
6
27 ∫
0
2
f ( y2+ xy ) dx
¿ 1
27 [ x y2+ x2 y
2 ] 2
0= 1
27 [ 2 y2+2 y ]
Therefore , f ( y ) = 2 y2+ 2 y
27
¿ the above obtained solutions , we can observe that f ( x , y ) ≠ f ( x ) f ( y )
Now we can confidently concludethat X ∧Y are not independent .
We now want ¿ calculte the xpected values ;
Expectedd values of 3 X −2 y is given by E [ 3 X −2Y ] =3 E [ X ] −2 E [ Y ] … … . A
Expected values of X will be givenby
E [ X ] =∫
−∞
∞
xf ( x ) dx
¿∫
0
2
1
6 x ( 2+x ) dx= 1
6 ∫
0
2
2 x + x2 dx
¿ 1
6 [x2 + x3
3 ]2
0= 1
6 (4+ 8
3 )=10
9
Therefore , E ( x ) =10
9
Also ,
E [ Y ] =∫
−∞
∞
yf ( x , y ) dy
¿∫
0
3
y ( 2 y2 + y
27 )dy = 2
27 ∫
0
3
( y3 + y2 ) dy
¿ 2
27 [ y4
4 + y3
3 ]3
0= 2
27 [ 81
4 + 27
3 ]=13
6
Therefore , E [ Y ] =13
6
Now ¿ our definition ¿ equation A
E [ 3 X−2 Y ]=3 ( 10
9 )−2 ( 13
6 )=10
3 − 13
3 =−1
Therefoe , E [ 3 X−2 Y ] =−1
Covariance
We wil consider a general formula for the covariance
Var [ X +Y ] =E [ ( X +Y ) 2 ] − [ E [ X +Y ] ] 2
Therefore , Var ( ax+ by ) =E [ ( ax +by ) 2 ] − [ E [ ax +by ] ] 2
¿ E [ a2 x2+ b2 y2 +2 abxy ]−¿
¿ a2 E [ x2 ]+b2 E [ Y 2 ] +2 ab [ XY ]−a2 x2−b2 y2−2 ab x y
Therefore , Var ( ax+by )=a2 σ2 x+b2 σ2 y2+2 abCxy … … … Equation B
Now we need ¿ find the σ 2 x ,σ 2 y ∧Cxy
E [ x2 ] =∫
−∞
∞
x2 f ( x ) dx=∫
0
2
x2 ( 2+ x
6 ¿¿) dx ¿ ¿
¿ 1
6 ∫
0
2
( 2 x2+x3 ) dx= 1
6 ( 16
3 + 4 ) = 8
9 + 2
3 = 14
9
E [ x2 ]=14
9
Var ( x )=σ2 x=E [ x2 ]− [ E [ x ] ]2
¿ ( 14
9 )− ( 10
9 )
2
¿ 14
9 − 100
81 =26
81
Hence , σ2 x=0.32099
E [ Y 2 ] =∫
−∞
∞
y2 f ( x ) dy=∫
0
3 y2 ( 2 y2 +2 y )
27 dy
E [ 3 X−2 Y ]=3 ( 10
9 )−2 ( 13
6 )=10
3 − 13
3 =−1
Therefoe , E [ 3 X−2 Y ] =−1
Covariance
We wil consider a general formula for the covariance
Var [ X +Y ] =E [ ( X +Y ) 2 ] − [ E [ X +Y ] ] 2
Therefore , Var ( ax+ by ) =E [ ( ax +by ) 2 ] − [ E [ ax +by ] ] 2
¿ E [ a2 x2+ b2 y2 +2 abxy ]−¿
¿ a2 E [ x2 ]+b2 E [ Y 2 ] +2 ab [ XY ]−a2 x2−b2 y2−2 ab x y
Therefore , Var ( ax+by )=a2 σ2 x+b2 σ2 y2+2 abCxy … … … Equation B
Now we need ¿ find the σ 2 x ,σ 2 y ∧Cxy
E [ x2 ] =∫
−∞
∞
x2 f ( x ) dx=∫
0
2
x2 ( 2+ x
6 ¿¿) dx ¿ ¿
¿ 1
6 ∫
0
2
( 2 x2+x3 ) dx= 1
6 ( 16
3 + 4 ) = 8
9 + 2
3 = 14
9
E [ x2 ]=14
9
Var ( x )=σ2 x=E [ x2 ]− [ E [ x ] ]2
¿ ( 14
9 )− ( 10
9 )
2
¿ 14
9 − 100
81 =26
81
Hence , σ2 x=0.32099
E [ Y 2 ] =∫
−∞
∞
y2 f ( x ) dy=∫
0
3 y2 ( 2 y2 +2 y )
27 dy
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
¿ 1
27 ∫
0
3
( 2 y4 +2 y3 ) dy= 1
27 [ 2 y5
5 + 2 y4
4 ] 3
0
¿ 1
27 [ 486
5 + 81
2 ]= [ 18
5 + 3
2 ] = 51
10
Var ( y )=σ 2 y=E [ y2 ]− [ E [ y ] ]2
¿ 51
10 −( 13
6 )
2
= 73
180
hence , σ2 y =0.4056
The Covariance Cxy=E [ xy ] −x y
E [ XY ] =∫
−∞
∞
∫
−∞
∞
xyf ( x , y ) dydx
¿∫
0
2
∫
0
3 xy ( y2 + xy )
27 dydx
¿∫
0
2
∫
0
3
1
27 ( x ( y4 )
4 + x2 y2
)dydx
¿∫
0
2
1
27 [ 81
4 +9 x2
]3
0 dx
¿∫
0
2
( 3
4 x +9 x2
) dx
¿ [ 3
4 ( x2
2 ) + 1
3 ( x3
3 ) ] 2
0
¿ [ 3
2 + 8
9 ]= 43
18
E [ X , Y ] = 43
18 =2.3889
Therefore , Cxy= 43
18 −( 10
9 )( 13
6 )=−1
54
Hence Cxy=−0.01852
27 ∫
0
3
( 2 y4 +2 y3 ) dy= 1
27 [ 2 y5
5 + 2 y4
4 ] 3
0
¿ 1
27 [ 486
5 + 81
2 ]= [ 18
5 + 3
2 ] = 51
10
Var ( y )=σ 2 y=E [ y2 ]− [ E [ y ] ]2
¿ 51
10 −( 13
6 )
2
= 73
180
hence , σ2 y =0.4056
The Covariance Cxy=E [ xy ] −x y
E [ XY ] =∫
−∞
∞
∫
−∞
∞
xyf ( x , y ) dydx
¿∫
0
2
∫
0
3 xy ( y2 + xy )
27 dydx
¿∫
0
2
∫
0
3
1
27 ( x ( y4 )
4 + x2 y2
)dydx
¿∫
0
2
1
27 [ 81
4 +9 x2
]3
0 dx
¿∫
0
2
( 3
4 x +9 x2
) dx
¿ [ 3
4 ( x2
2 ) + 1
3 ( x3
3 ) ] 2
0
¿ [ 3
2 + 8
9 ]= 43
18
E [ X , Y ] = 43
18 =2.3889
Therefore , Cxy= 43
18 −( 10
9 )( 13
6 )=−1
54
Hence Cxy=−0.01852
Now finding the variance of 3 X −2 Y ¿ equation B
But , we are given a=3∧b=−2
Therefore , Var ( 3 X −2 Y ) = ( 3 ) 2 ( 0.3210 ) + ( −2 ) 2 ( 0.4056 ) +2 ( 3 ) ( −2 ) ( −0.0185 )
¿ 4.7334
Part c
Solution
P [ X ≤|Y =1 ]=∫
−∞
1
2
f ( x , y ) dx
fy(1) dx∨ y =1
¿∫
0
1
2 y2 + xy
27
fy(1) dx aty=1
¿∫
0
1
2 ( 1+ x
27 )dx
f y (1)
¿ 1
27 [x + x2
2 ] 1
2
0
× 9
1
¿ 1
27 [ 0.5+0.125 ] × 9
¿ 5
24 =0.20833
Therefore , P [ X ≤ 1
2|Y =1 ]=0.20833
Part d
Solution
The conditional expected value of P [ Y |X=1 ] is givenby
P [ Y |X=1 ]=∫
−∞
∞
yf ( y
x =1 )dy wheref ( y|x=1 )= f (x , y)
f ( x )∨x=1
But , we are given a=3∧b=−2
Therefore , Var ( 3 X −2 Y ) = ( 3 ) 2 ( 0.3210 ) + ( −2 ) 2 ( 0.4056 ) +2 ( 3 ) ( −2 ) ( −0.0185 )
¿ 4.7334
Part c
Solution
P [ X ≤|Y =1 ]=∫
−∞
1
2
f ( x , y ) dx
fy(1) dx∨ y =1
¿∫
0
1
2 y2 + xy
27
fy(1) dx aty=1
¿∫
0
1
2 ( 1+ x
27 )dx
f y (1)
¿ 1
27 [x + x2
2 ] 1
2
0
× 9
1
¿ 1
27 [ 0.5+0.125 ] × 9
¿ 5
24 =0.20833
Therefore , P [ X ≤ 1
2|Y =1 ]=0.20833
Part d
Solution
The conditional expected value of P [ Y |X=1 ] is givenby
P [ Y |X=1 ]=∫
−∞
∞
yf ( y
x =1 )dy wheref ( y|x=1 )= f (x , y)
f ( x )∨x=1
¿
( y ¿¿ 2+ xy ) 1
27
( 2
27 + x
27 ) when x=1
¿
¿ y2+ xy
27 × 9
1 = y2
3 + xy
3
Applyingexp ected value formula
E [ P [ Y ]|x=1 ] =∫
−∞
∞ y ( y2+ xy )
3 dy∨x =1
¿∫
0
3
y3+ y2
3 dy
¿ [ y4
4 + y3
9 ]3
0=81
4 +3
1 = 93
4 =23.25
Problem 4
Solution
Given that
Y = { x if |x|≤ a ⇒ a=0
−x if |a|<a ⟹ a=1 }since a >0
Now to show that the distribution has a standard distribution, we will compare
P ( Y ≤ x ) with P ( X ≤ x )
Starting with
F ( Y ) =P ( Y ≤ y )
¿ P ( Y ≤ y ;|x|=0 ) + P ( Y ≤ y ;|x|=1 )
¿ P ( X ≤ y ;|x |=0 ) + P ( −X ≤ y ;|x |=1 )
The ∑ of the individual probabilites should be 1
P ( X ≤ y ) ; p (|x|0 ) + p (−X ≤ y ; P (|x|=1 ) )
Now addingthe above probabilities
( y ¿¿ 2+ xy ) 1
27
( 2
27 + x
27 ) when x=1
¿
¿ y2+ xy
27 × 9
1 = y2
3 + xy
3
Applyingexp ected value formula
E [ P [ Y ]|x=1 ] =∫
−∞
∞ y ( y2+ xy )
3 dy∨x =1
¿∫
0
3
y3+ y2
3 dy
¿ [ y4
4 + y3
9 ]3
0=81
4 +3
1 = 93
4 =23.25
Problem 4
Solution
Given that
Y = { x if |x|≤ a ⇒ a=0
−x if |a|<a ⟹ a=1 }since a >0
Now to show that the distribution has a standard distribution, we will compare
P ( Y ≤ x ) with P ( X ≤ x )
Starting with
F ( Y ) =P ( Y ≤ y )
¿ P ( Y ≤ y ;|x|=0 ) + P ( Y ≤ y ;|x|=1 )
¿ P ( X ≤ y ;|x |=0 ) + P ( −X ≤ y ;|x |=1 )
The ∑ of the individual probabilites should be 1
P ( X ≤ y ) ; p (|x|0 ) + p (−X ≤ y ; P (|x|=1 ) )
Now addingthe above probabilities
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
¿ 1 ¿
where 1is the∑ of probabilites of the two variables ¿
¿ P ( X ≤ y )
The variable x is not symmetric at any point
Fx ( y ) ∧f (x )≠ f (−x)
Therefore, the variable x and y do not have the same distribution function.
Since the variables don not share same function, Y has no standard normal distribution.
Problem 5
Given the function
f ( x ) = λ x−1 ( λ+1 ) for x ≥ 1
Looking at the given function above , we can confidently see say our function increases
supposethat t ∈ [ 0 , ∞ ) then
P ( Y ≤ t )=P ( x ≤ et )
¿ 1−e−λ ( λ x−1 ( λ+1 ) )
But y=lnx
then x=e y
¿ 1−e−( ( λ2 x−λ ) )
¿ 1−e−λ2 (X− ( λ+1 ) )
Now let the exponential distributionbe denoted by
Q ( x )=1−e−qx whereQ ( x ) is the function that decreases .
¿ 1−e−λ2
. X−( λ+1 ) is the exponetial function of th parameter λ .
Problem 6
Solution
where 1is the∑ of probabilites of the two variables ¿
¿ P ( X ≤ y )
The variable x is not symmetric at any point
Fx ( y ) ∧f (x )≠ f (−x)
Therefore, the variable x and y do not have the same distribution function.
Since the variables don not share same function, Y has no standard normal distribution.
Problem 5
Given the function
f ( x ) = λ x−1 ( λ+1 ) for x ≥ 1
Looking at the given function above , we can confidently see say our function increases
supposethat t ∈ [ 0 , ∞ ) then
P ( Y ≤ t )=P ( x ≤ et )
¿ 1−e−λ ( λ x−1 ( λ+1 ) )
But y=lnx
then x=e y
¿ 1−e−( ( λ2 x−λ ) )
¿ 1−e−λ2 (X− ( λ+1 ) )
Now let the exponential distributionbe denoted by
Q ( x )=1−e−qx whereQ ( x ) is the function that decreases .
¿ 1−e−λ2
. X−( λ+1 ) is the exponetial function of th parameter λ .
Problem 6
Solution
A A charactiristic function of anr random variable is defined by :
Ψ ( t ) =∫
0
∞
( eitu ) dF ( u )
Ψ ( t )=∫
0
∞
( eitu ) f (u)d ( u )
Now given that x >0 , then functionwould be Ψ ( 0 )=1
dn Ψ ( t )
d tn but t=0 ∈ ( X n )
Ψ n =∈ ( X n )
The new function would be
Ψn ( t ) =∫
0
∞
Ψ ( tu ) + f ( u ) F (u)
Ψn ( t )=∫
0
∞
Ψ ( tu )+f ( u ) d (u)
As seen above the new characteristic function satisfies every condition for characteristic function
of a non-negative random variable.
Ψn ( t ) =∫
0
∞
Ψ ( tu ) dF (u)
Ψn ( t )=∫
0
∞
Ψ ( tu ) f (u ) d( u)
Ψ ' n ( t ) = d
dt ∫
0
∞
Ψ ( tu ) uf ( u ) d (u)
Now
Ψ m
n ( t ) = dm
d tm ∫
0
∞
Ψ ( u ) ( u ) m f ( u ) du
We can cle arly see that
Ψ ( t ) =∫
0
∞
( eitu ) dF ( u )
Ψ ( t )=∫
0
∞
( eitu ) f (u)d ( u )
Now given that x >0 , then functionwould be Ψ ( 0 )=1
dn Ψ ( t )
d tn but t=0 ∈ ( X n )
Ψ n =∈ ( X n )
The new function would be
Ψn ( t ) =∫
0
∞
Ψ ( tu ) + f ( u ) F (u)
Ψn ( t )=∫
0
∞
Ψ ( tu )+f ( u ) d (u)
As seen above the new characteristic function satisfies every condition for characteristic function
of a non-negative random variable.
Ψn ( t ) =∫
0
∞
Ψ ( tu ) dF (u)
Ψn ( t )=∫
0
∞
Ψ ( tu ) f (u ) d( u)
Ψ ' n ( t ) = d
dt ∫
0
∞
Ψ ( tu ) uf ( u ) d (u)
Now
Ψ m
n ( t ) = dm
d tm ∫
0
∞
Ψ ( u ) ( u ) m f ( u ) du
We can cle arly see that
Ψ ( 0 ) =∫
0
∞
Ψ ( 0 ) dF ( u )
Ψ ( 0 ) =∫
0
∞
( 1 ) f (u)d ( u )
Ψ ( 0 ) =1
Ψ m
n ( 0 ) =∫
0
∞
Ψ ( 0 ) um f ( u ) du
Ψ m
n ( 0 )=∫
0
∞
( 1 ) um f ( u ) du
Ψ m
n ( 0 ) =∫
0
∞
um f ( u ) d (u)
Ψ m
n ( 0 ) =∈(um )
Th erefore , Ψ ( t ) =∫
0
∞
etu f ( u ) du
sinceu >0 , thenfollows that um >0
It can be see that the new function Ψ ( t ) =∫
0
∞
etu f ( u ) dusatisfies all functions of the random
variable.
Problem 7
Solution
W e would solve this ¿ a known charateristic funtion of a prob . distribution P(x)
The function isexp (itz)
The function of the of P ( z ) will be givenby
Φ ( t )=E [ exp ( itz ) ]
0
∞
Ψ ( 0 ) dF ( u )
Ψ ( 0 ) =∫
0
∞
( 1 ) f (u)d ( u )
Ψ ( 0 ) =1
Ψ m
n ( 0 ) =∫
0
∞
Ψ ( 0 ) um f ( u ) du
Ψ m
n ( 0 )=∫
0
∞
( 1 ) um f ( u ) du
Ψ m
n ( 0 ) =∫
0
∞
um f ( u ) d (u)
Ψ m
n ( 0 ) =∈(um )
Th erefore , Ψ ( t ) =∫
0
∞
etu f ( u ) du
sinceu >0 , thenfollows that um >0
It can be see that the new function Ψ ( t ) =∫
0
∞
etu f ( u ) dusatisfies all functions of the random
variable.
Problem 7
Solution
W e would solve this ¿ a known charateristic funtion of a prob . distribution P(x)
The function isexp (itz)
The function of the of P ( z ) will be givenby
Φ ( t )=E [ exp ( itz ) ]
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
Φ ( t ) =∫
−∞
∞
exp ( itz ) P ( z ) dz
Φ ( t )=∫
−∞
∞
e (itz ) .( 1
−z−3 ¿)dz+∫
1
∞
e
( itz )
( 1
z )3
dz ¿
Φ ( t ) =∫
1
∞
e− ( itz ) × ( 1
z3 ) +∫
1
∞
e
( itz ) × ( 1
z )
3
dz
Φ ( t ) =∫
1
∞
e− ( itz ) × ( 1
z3 ) +∫
1
∞
e
( itz ) × ( 1
z3 )
❑
dz
Φ ( t )= ( 1−t2 ) ׿
Therefore, the characteristic function has been proved.
Part b
Solution
We have to consider CLT
If the vraiables X 1 , X 2 , … Xn
Then
s
√ n → N ( 0,1 ) as n approaches ∞from the right
s
√ (nlogn) → N ( 0,1 ) asn approaches ∞ ¿ ¿
Now
lim
n → ∞
( √ n ) = lim
n→ ∞
¿ ¿
Thereby , proved .
−∞
∞
exp ( itz ) P ( z ) dz
Φ ( t )=∫
−∞
∞
e (itz ) .( 1
−z−3 ¿)dz+∫
1
∞
e
( itz )
( 1
z )3
dz ¿
Φ ( t ) =∫
1
∞
e− ( itz ) × ( 1
z3 ) +∫
1
∞
e
( itz ) × ( 1
z )
3
dz
Φ ( t ) =∫
1
∞
e− ( itz ) × ( 1
z3 ) +∫
1
∞
e
( itz ) × ( 1
z3 )
❑
dz
Φ ( t )= ( 1−t2 ) ׿
Therefore, the characteristic function has been proved.
Part b
Solution
We have to consider CLT
If the vraiables X 1 , X 2 , … Xn
Then
s
√ n → N ( 0,1 ) as n approaches ∞from the right
s
√ (nlogn) → N ( 0,1 ) asn approaches ∞ ¿ ¿
Now
lim
n → ∞
( √ n ) = lim
n→ ∞
¿ ¿
Thereby , proved .
1 out of 12
Related Documents
Your All-in-One AI-Powered Toolkit for Academic Success.
+13062052269
info@desklib.com
Available 24*7 on WhatsApp / Email
Unlock your academic potential
© 2024 | Zucol Services PVT LTD | All rights reserved.