Forecasting Nike Quarterly Revenue with Regression Analysis
Verified
Added on 2023/06/10
|14
|1538
|318
AI Summary
This report presents a regression analysis of Nike's quarterly revenue with respect to e-commerce sales, US GDP, China GDP, Consumer Price Index, and US Employment Rate. The report also includes a forecast of Nike's revenue for Q1 2018 through Q4 2019 using double exponential smoothing and time series plot.
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
Running Head: REQUIREMENT ANALYSIS AND MODELLING Requirement Analysis and Modelling Name of the student: Name of the university: Course ID:
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
1REQUIREMENT ANALYSIS AND MODELLING Table of Contents Forecast of Nike Quarterly Revenue with respect to E-commercial sales:.....................................2 Forecasting of Nike Quarterly Revenue:.........................................................................................3 Regression re-integration and Nike revenue forecast:.....................................................................4 1. Double Exponential Smoothing for Nike Revenue (in B).......................................................4 2. Forecast of Nike Revenue Q1 2018 thru Q4 2019 (Time Series Plot)....................................6 Regression:......................................................................................................................................7 1. Regression of “US GDP” and “China GDP”...........................................................................7 2. Regression of “Nike Revenue” and “US Employment Rate”..................................................8 3. Regression of “Nike Revenue” and “China GDP”..................................................................9 4. Regression of “Nike Revenue” and “Consumer Price Index”...............................................10 5. Regression of “Nike Revenue” and “US GDP”.....................................................................11 References:....................................................................................................................................13
2REQUIREMENT ANALYSIS AND MODELLING Forecast of Nike Quarterly Revenue with respect to E-commercial sales: Dependent Variable: NIKE_REVENUE__IN_B_ Method: Least Squares Date: 07/04/18Time: 16:13 Sample: 2011Q2 2018Q2 Included observations: 29 VariableCoefficientStd. Errort-StatisticProb. C12.578120.76380316.467750.0000 E_COMMERCE_SALES__IN_B_0.2056200.00930422.101040.0000 R-squared0.947619Mean dependent var28.81759 Adjusted R-squared0.945679S.D. dependent var4.818429 S.E. of regression1.123023Akaike info criterion3.136397 Sum squared resid34.05187Schwarz criterion3.230693 Log likelihood-43.47776Hannan-Quinn criter.3.165930 F-statistic488.4562Durbin-Watson stat0.108579 Prob(F-statistic)0.000000 -3 -2 -1 0 1 2 15 20 25 30 35 40 20112012201320142015201620172018 ResidualActualFitted
3REQUIREMENT ANALYSIS AND MODELLING 16 20 24 28 32 36 40 44 20112012201320142015201620172018 NIKE_REVENF Actuals ±2S.E. Forecast:NIKE_REVENF Actual:NIKE_REVENUE__IN_B_ Forecastsample:2011Q22018Q2 Includedobservations:29 Root Mean Squared Error1.083606 Mean Absolute Error0.898438 Mean Abs. Percent Error3.185658 Theil Inequality Coef.0.018559 Bias Proportion0.000000 Variance Proportion0.013450 Covariance Proportion0.986550 Theil U2 Coefficient1.494416 Symmetric MAPE3.164273 (Newbold& Bos, 1994) Forecasting of Nike Quarterly Revenue: Dependent Variable: NIKE_REVENUE__IN_B_ Method: Least Squares Date: 07/05/18Time: 09:50 Sample: 2011Q2 2018Q2 Included observations: 29 VariableCoefficientStd. Errort-StatisticProb. C-4506.60586.43905-52.136210.0000 QUARTERS0.0061660.00011852.469630.0000 R-squared0.990288Mean dependent var28.81759 Adjusted R-squared0.989928S.D. dependent var4.818429 S.E. of regression0.483568Akaike info criterion1.451221 Sum squared resid6.313617Schwarz criterion1.545517 Log likelihood-19.04270Hannan-Quinn criter.1.480753 F-statistic2753.062Durbin-Watson stat0.304929 Prob(F-statistic)0.000000
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
13REQUIREMENT ANALYSIS AND MODELLING References: Agung, I. G. N. (2011).Time series data analysis using EViews. John Wiley & Sons. Anghelache, C., Manole, A., & Anghel, M. G. (2015). Analysis of final consumption and gross investmentinfluenceonGDP–multiplelinearregressionmodel.TheoreticalandApplied Economics,22(3), 137-142. Diebold, F. X. (1998).Elements of forecasting. South-Western College Pub.. Newbold, P., & Bos, T. (1994). Introductory business and economic forecasting.International Journal of Forecasting,16, 451-476.