Optimizing Golf Hole Configuration for Maximum Enjoyment
Verified
Added on 2023/03/31
|10
|1972
|147
AI Summary
This article discusses the process of optimizing the golf hole configuration for maximum enjoyment at Cunningham Golf Resort. It covers decision variables, objective functions, and constraints, and provides mathematical expressions for each model. The article also explores different options and their feasibility.
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
Part 1: Action Plan 1.Decision variables These are the variables that need to be altered so as to optimize the objective function. In this analysis, the decision variable is the golf hole configuration. Let x represent the number of golf holes; then x1=Straightpar5 x2=Doglegpar5 x3=Straightpar4 x4=Doglegpar4 x5=longpar3 x6=Shortpar3 2.Objective function This is the function that need to be optimised. The objective function for this linear programming is the total enjoyment index. 3.Constraints The constraints of a linear programming are the set conditions that must be adhered to by the linear program for its output to be classified as feasible. The constraints are listed below; The total construction cost should not exceed $ 20 million. The acreage of the golf resort needs to be between 36 and 42. The number of pars for all the golf holes ought to be between 70 and 72. Total golf holes to be constructed are to be 18. Par 5 should not exceed 4 Par 4 should not exceed 14. Par 3 should not exceed 4. Straight par 5 should not be less than 1 Dogleg oar 5 should not be less than 1 Straight oar 4 should not be less than 2.
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
Dogleg par 4 should not be less than 2 Long par 3 should not be less than 1 Short par 3 should not be less than 1 Also, another constraint that need to be accounted for is the type of clubhouse to be constructed. Let a clubhouse be denoted by z. then; z1=Standardclubhouse z2=Exclusiveclubhouse 4.Mathematical expressions The objective function and the constraints will be modelled as mathematical equations for each of the models created. Managers plan In this plan the clubhouse to be included is the standard clubhouse at a cost of $ 3.5 million covering 2 hectares. The model plan Max;2x1+1.5x2+1.5x3+2x4+1.75x5+2.25x6 Subjects to the constraints x1≥1 x2≥1 x3≥2 x4≥2 x5≥1 x6≥1 x1+x2≤4 x3+x4≤14 x5+x6≤4 x1+x2+x3+x4+x5+x6=18
3x1+3.5x2+2x3+2,5x4+1x5+0.75x6+2z1≤42 3x1+3.5x2+2x3+2,5x4+1x5+0.75x6+2z1≥36 1000000x1+1500000x2+750000x3+900000x4+600000x5+650000x6+3500000z1≤20000000 5x1+5x2+4x3+4x4+3x5+3x6≤72 5x1+5x2+4x3+4x4+3x5+3x6≥70 When these details are modelled in excel, we obtain the model as summarized by the table below. Cunningham Golf Resort Straight par 5Dogleg par 5Straight par 4Dogleg par 4Long par 3Short par 3 Par5584039 Size33.542512.25 Enjoyment Index21.53201.756.75 Construction cost$1,000,000$1,500,000$1,500,000$9,000,000$600,000$1,950,000 Number1121013 >=>=>=>=>=>= 112211 Clubhouse Standard Cost$3,500,000 Size2 Enjoyment Index0 Objective Function Total Enjoyment Index35 Constraints Par 52<=4 Par 412<=14 Par 34<=4 Total Size40.75<=42 Total Size40.75>=36 Total Cost$19,050,000<=$20,000,000 Total Par70<=72 Total Par70>=70 Number of holes18=18 Shareholders plan In the shareholders plan, the golf resort is to include an exclusive warehouse constructed at a cost of $ 6 million and covering an area of 4 hectares.
The model plan Max;2x1+1.5x2+1.5x3+2x4+1.75x5+2.25x6+4z2 Subjects to the constraints x1≥1 x2≥1 x3≥2 x4≥2 x5≥1 x6≥1 x1+x2≤4 x3+x4≤14 x5+x6≤4 x1+x2+x3+x4+x5+x6=18 3x1+3.5x2+2x3+2,5x4+1x5+0.75x6+4z2≤42 3x1+3.5x2+2x3+2,5x4+1x5+0.75x6+4z2≥36 1000000x1+1500000x2+750000x3+900000x4+600000x5+650000x6+6000000z2≤20000000 5x1+5x2+4x3+4x4+3x5+3x6≤72 5x1+5x2+4x3+4x4+3x5+3x6≥70 The model is summarized below (no feasible solution)
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Cunningham Golf Resort Straight par 5Dogleg par 5Straight par 4Dogleg par 4Long par 3Short par 3 Par5538.66666667893 Size33.519.33333333530.75 Enjoyment Index21.514.545.252.25 Construction cost$1,000,000$1,500,000$7,250,000$1,800,000$1,800,000$650,000 Number119.666666667231 >=>=>=>=>=>= 112211 Clubhouse Exclusive Cost$6,000,000 Size4 Enjoyment Index4 Objective Function Total Enjoyment Index33.5 Constraints Par 52<=4 Par 411.66666667<=14 Par 34<=4 Total Size38.58333333<=42 Total Size38.58333333>=36 Total Cost$20,000,000<=$20,000,000 Total Par68.66666667<=72 Total Par68.66666667>=70 Number of holes17.66666667=18 Option In option 1, the size of the exclusive clubhouse is modified to 3.5. The model plan is as described. Max;2x1+1.5x2+1.5x3+2x4+1.75x5+2.25x6+4z2 Subjects to the constraints x1≥1 x2≥1 x3≥2 x4≥2 x5≥1
x6≥1 x1+x2≤4 x3+x4≤14 x5+x6≤4 x1+x2+x3+x4+x5+x6=18 3x1+3.5x2+2x3+2,5x4+1x5+0.75x6+3.5z2≤42 3x1+3.5x2+2x3+2,5x4+1x5+0.75x6+3.5z2≥36 1000000x1+1500000x2+750000x3+900000x4+600000x5+650000x6+6000000z2≤20000000 5x1+5x2+4x3+4x4+3x5+3x6≤72 5x1+5x2+4x3+4x4+3x5+3x6≥70 The excel model output is as summarized (no feasible solution) Cunningham Golf Resort Straight par 5Dogleg par 5Straight par 4Dogleg par 4Long par 3Short par 3 Par5538.66666667893 Size33.519.33333333530.75 Enjoyment Index21.514.545.252.25 Construction cost$1,000,000$1,500,000$7,250,000$1,800,000$1,800,000$650,000 Number119.666666667231 >=>=>=>=>=>= 112211 Clubhouse Exclusive Cost$6,000,000 Size3.5 Enjoyment Index4 Objective Function Total Enjoyment Index33.5 Constraints Par 52<=4 Par 411.66666667<=14 Par 34<=4 Total Size38.08333333<=42 Total Size38.08333333>=36 Total Cost$20,000,000<=$20,000,000 Total Par68.66666667<=72 Total Par68.66666667>=70 Number of holes17.66666667=18
Option 2 In option 2 the construction cost of the model is reduced to $ 5 million. The model plan Max;2x1+1.5x2+1.5x3+2x4+1.75x5+2.25x6+4z2 Subjects to the constraints x1≥1 x2≥1 x3≥2 x4≥2 x5≥1 x6≥1 x1+x2≤4 x3+x4≤14 x5+x6≤4 x1+x2+x3+x4+x5+x6=18 3x1+3.5x2+2x3+2,5x4+1x5+0.75x6+3.5z2≤42 3x1+3.5x2+2x3+2,5x4+1x5+0.75x6+3.5z2≥36 1000000x1+1500000x2+750000x3+900000x4+600000x5+650000x6+5000000z2≤20000000 5x1+5x2+4x3+4x4+3x5+3x6≤72 5x1+5x2+4x3+4x4+3x5+3x6≥70 The model output
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
Cunningham Golf Resort Straight par 5Dogleg par 5Straight par 4Dogleg par 4Long par 3Short par 3 Par55242439 Size33.5121512.25 Enjoyment Index21.59121.756.75 Construction cost$1,000,000$1,500,000$4,500,000$5,400,000$600,000$1,950,000 Number116613 >=>=>=>=>=>= 112211 Clubhouse Exclusive Cost$5,000,000 Size4 Enjoyment Index4 Objective Function Total Enjoyment Index37 Constraints Par 52<=4 Par 412<=14 Par 34<=4 Total Size40.75<=42 Total Size40.75>=36 Total Cost$19,950,000<=$20,000,000 Total Par70<=72 Total Par70>=70 Number of holes18=18 Option 3 In option 3, the project budget is increased to $20.7 million The model plan Max;2x1+1.5x2+1.5x3+2x4+1.75x5+2.25x6+4z2 Subjects to the constraints x1≥1 x2≥1 x3≥2 x4≥2 x5≥1 x6≥1
x1+x2≤4 x3+x4≤14 x5+x6≤4 x1+x2+x3+x4+x5+x6=18 3x1+3.5x2+2x3+2,5x4+1x5+0.75x6+3.5z2≤42 3x1+3.5x2+2x3+2,5x4+1x5+0.75x6+3.5z2≥36 1000000x1+1500000x2+750000x3+900000x4+600000x5+650000x6+6000000z2≤20700000 5x1+5x2+4x3+4x4+3x5+3x6≤72 5x1+5x2+4x3+4x4+3x5+3x6≥70 The model output Cunningham Golf Resort Straight par 5Dogleg par 5Straight par 4Dogleg par 4Long par 3Short par 3 Par55321639 Size33.5161012.25 Enjoyment Index21.51281.756.75 Construction cost$1,000,000$1,500,000$6,000,000$3,600,000$600,000$1,950,000 Number118413 >=>=>=>=>=>= 112211 Clubhouse Exclusive Cost$6,000,000 Size4 Enjoyment Index4 Objective Function Total Enjoyment Index36 Constraints Par 52<=4 Par 412<=14 Par 34<=4 Total Size39.75<=42 Total Size39.75>=36 Total Cost$20,650,000<=$20,700,000 Total Par70<=72 Total Par70>=70 Number of holes18=18