logo

Solutions to Partial Differential Equations

   

Added on  2023-06-10

12 Pages2355 Words397 Views
Solution
Q1)
u
t = 2 u
x2
u(x, t) = (C1cos(px) + C2sin(px))e p2 C2 t
= (C1cos(px) + C2sin(px))e p2 π 2 t
As given u(0, t) = 0= C1e p2 πt
C1 = 0
u( π ,t ¿=¿C2sin(p π))e p2 π 2 t
sin(pπ ¿=0
p π=
p= n
u(x, t) = bn*en2 πt sin (nx )
where bn = C2
u(x, t) = b nen2 πt sin (nx )
=
n =1

bnsin(nx)
Here,
bn = 2
π
0
π
¿ ¿
= 2
π [3 ( sin ( 5n ) x
2(5n) sin ( ( n+5 ) x )
2(n+5) )11 ( sin ( 4n ) x
2(4n) sin ( n+4 ) x
2(n+ 4) ) ] at limits of π 0
= 2
π [3 ( sin ( 5n ) π
2(5n) sin ( ( n+5 ) π )
2(n+ 5) )11 ( sin ( 4n ) π
2(4n) sin ( n+ 4 ) π
2(n+ 4) ) ]
bn = 6
π [2 ( 5n )2 ( n+5 ) ] 22
π [2 ( 4n )2 ( n+ 4 ) ]
Solutions to Partial Differential Equations_1
bn = 6
π (25n2) 22
π (16n2)
take n = 2m-1
u(x, t) =
m=1

¿e (2 m1 )2 πtsin (2 m1)x ¿ ¿
Q2)
let u= XT
XT11 = kX11T
T11
T =k X 11
X
Let m = 0, T11 = 0=> T = a t + b
X11 = ux => x = Ae ux+ B e ux
u(x, t) = (at + b)( Ae ux+ B e ux ¿
u(x, 0) = 0
a = 0
u(0, t) = 0 => b(A + B) = 0
u(l, t) = 0 => b(Ae ul+ B e ul ¿= 0
b(Ae ul+ B e ul ¿=2bAsinnul = 0
therefore
u(x, t) = 0
m 0
let m >0, m= λ2
T11 = λ2 T , T= A eλt + B eλt
X11 = (λ2+u ¿ x
X = C+ D e λ2 +ux
u(x, t) = ( A e λt + B eλt )(C e λ2 +ux+ D e λ2+ux )
u(0, t) = 0
= > ( A e λt + B eλt )(C + D) = 0
= > C – D
U(l, t) = ( A e λt + B eλt )(C e λ2 +ul+ D e λ2 +ul) = 0
Solutions to Partial Differential Equations_2
= > ( C e λ2 +ul+ D e λ2+ ul ) =0
= > c (e λ2+ul +e λ2+ul )=0
= cSin(n λ2 +ul) = 0 , c= 0=D=0
General solution
u(x, t) = BDsin λ2uxsinλt
general solution
u ( x , t ) =
n=1

Ansin(nπx) sin λ2uxsinλt
U(x, t) = f(x)
U(x, t) =
n =1

n2 π2 +u2
Ansinn πxcos n2 π 2+u2 t
u(x, 0) = f(x)
f ( x )=
n=1

An n2 π2 +u2sinnπx

n =1

An n2 π2 +u2sinnπxsinm πx=f ( x ) sinmπx
Amm2 π2 +u2

0
1
sin2 mπx=
0
1
f ( x ) sinmπx
= > Am
2 m2 π2 +u2

0
1
1cos2 mπx=
0
1
f ( x ) sinmπx
= > Am
2 m2 π2 +u2=
0
1
f ( x ) sinmπx
Am = 2
m2 π 2+u2
0
1
f ( x ) sinmπx
So,
u(x, t) =
n =1

Ansinnπxsin m2 π2 +u2 t
Solutions to Partial Differential Equations_3
b)
u(x, t) = (C1cos(px) + C2sin(px))e p2 C2 t
= (C1cos(px) + C2sin(px))e p2 π 2 t
As given u(0, t) = 0= C1e p2 πt
C1 = 0
u( π ,t ¿=¿C2sin(p π))e p2 π 2 t
sin(pπ ¿=0
p π=
p= n
u(x, t) = bn*en2 πt sin (nx )
where bn = C2
u(x, t) = b nen2 πt sin (nx )
=
n =1

bnsin(nx)
Here,
bn = 2
π
0
π
¿ ¿
=
2
π [ ( n26 n ) cos ( n+ 6 ) x +(10 n2360)(cos ( nx )+ ( n2 +6 n ) c 0 s ( n6 ) x )
4 n(n236) ]at thelimits between π0
= - 2
π [ ( n26 n ) cos ( n+6 ) π +(10 n2360)(cos ( ) + ( n2 +6 n ) cos ( n6 ) π )
4 n (n236) ] at the limitsbetween π 0
bn = 2
π ( n26 n+10 n2360+ n2 +6 n
4 n(n2 36) )
take n = 2m-1
Solutions to Partial Differential Equations_4

End of preview

Want to access all the pages? Upload your documents or become a member.

Related Documents
Approximate Derivatives and Differential Equations Solutions
|8
|1368
|198

Solution of the Diffusion Equation
|9
|1710
|387

Dimensions and Equations in Physics
|10
|1331
|97

Algebra
|11
|1016
|411

Cambridge Pre-U Revised Syllabus: List of Formulas and Statistical Tables
|12
|3210
|245

Assignment #2
|5
|889
|363