Partition Function, Entropy, Distinguishability, Planck Distribution, Heat Capacity of Platinum
VerifiedAdded on 2023/06/12
|10
|2204
|237
AI Summary
This article covers topics such as Partition Function, Entropy, Distinguishability, Planck Distribution, and Heat Capacity of Platinum. It includes formulas and equations for each topic.
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
Running Head: PVB 301 1
PVB 301 Assignment 2
Student’s name
University affiliation
PVB 301 Assignment 2
Student’s name
University affiliation
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
PVB 301 2
1. PARTITION FUNCTION OF A 2D GAS
The partition equation for a system of particles that obeys Boltzmann statistics has a
definition (Harris, 2012).
Z=∑
j
g j e−ε j/ kBT
………………………………… (1)
Where there are ∆G j energy states within the macro level then
Z=∑
j
∆ G j e−ε j/ kB T
………………………………….. (2) And ε j= h2 A−1
8 m n j
2
………………………………………………… (3) For single particle in a box using the
principle of quantum mechanics. For a gas confined in a 2D area;
Gj = 1
4 π n j
2
………………………………………………. (4)
∆ G j= 1
2 π nj ∆ n j substituting ∆ G j in the second equation;
Z= π
2 ∑
j
nj ∆ n j e−ε j /kB T
…………………………. (5)
Substituting ε jin equation (3) into equation (5);
Z= π
2 ∑
j
nj ∆ n j e−¿ h2 A−1
8 m k B T n j
2 ¿
Integrating from 0 to ∞; Z= π
2 ∫
0
∞
nj exp ( −h2 A−1
8 m k B T nj
2
) d n j;
Z=A ( 2 πm kB T
h2 )
2
2 = A
( h2
2 πm kB T )
= A
λth
2 Where λth= h
√ (2 πmk B T )
2. ENTROPY AND DISTINGUISHABILITY
1. PARTITION FUNCTION OF A 2D GAS
The partition equation for a system of particles that obeys Boltzmann statistics has a
definition (Harris, 2012).
Z=∑
j
g j e−ε j/ kBT
………………………………… (1)
Where there are ∆G j energy states within the macro level then
Z=∑
j
∆ G j e−ε j/ kB T
………………………………….. (2) And ε j= h2 A−1
8 m n j
2
………………………………………………… (3) For single particle in a box using the
principle of quantum mechanics. For a gas confined in a 2D area;
Gj = 1
4 π n j
2
………………………………………………. (4)
∆ G j= 1
2 π nj ∆ n j substituting ∆ G j in the second equation;
Z= π
2 ∑
j
nj ∆ n j e−ε j /kB T
…………………………. (5)
Substituting ε jin equation (3) into equation (5);
Z= π
2 ∑
j
nj ∆ n j e−¿ h2 A−1
8 m k B T n j
2 ¿
Integrating from 0 to ∞; Z= π
2 ∫
0
∞
nj exp ( −h2 A−1
8 m k B T nj
2
) d n j;
Z=A ( 2 πm kB T
h2 )
2
2 = A
( h2
2 πm kB T )
= A
λth
2 Where λth= h
√ (2 πmk B T )
2. ENTROPY AND DISTINGUISHABILITY
PVB 301 3
a) Probability density for distributing N1 particles in a sub volume V1, and N2 in
V2, is given by the binomial distribution (Santos, Dorini, & Cunha, 2008);
W = N !
N1 ! N2 ! ( V 1
V )N1
( V 2
V )N2
¿ W =¿ Ωc ( V 1 N1 ) +¿ Ωc ( V 2 N2 ) −¿ Ωc ( V 1 N ) Ωc (V , N)=( V N
N ! )
Entire entropy;Ωp (U , N )=
( (2 πmU )
3 N
2
(3 N
2 )! )
Assuming N>>1 Ωp ( U , V , N ) =
( Ωc (V , N )Ωp (U , N )
h3 N )
Substituting : S=kInΩ ( U ,V , N )This gives the same Sackur-Tetrode equation for distinguishable
particles as for indistinguishable ones.
b) Helmholtz energy: F=U – TS
dA=−SdT − pdV =−SdT − pdV +∑
j
u j dN j
Where N j=no of particles
u j=corresponding chemical potentials
dA=−SdT −∑
i
ui dNi +∑
j
u j dN jCITATION Vid 08 ¿ 1033(Vidal ,2008)
Probability to find the system in some energy Eigen state r
Pr = e−βEr
Z Whereβ= 1
kT , Z=∑
r
e− βr
U = ⟨ E ⟩=∑
r
Pr Xr= 1
β
∂ logz
∂ x
a) Probability density for distributing N1 particles in a sub volume V1, and N2 in
V2, is given by the binomial distribution (Santos, Dorini, & Cunha, 2008);
W = N !
N1 ! N2 ! ( V 1
V )N1
( V 2
V )N2
¿ W =¿ Ωc ( V 1 N1 ) +¿ Ωc ( V 2 N2 ) −¿ Ωc ( V 1 N ) Ωc (V , N)=( V N
N ! )
Entire entropy;Ωp (U , N )=
( (2 πmU )
3 N
2
(3 N
2 )! )
Assuming N>>1 Ωp ( U , V , N ) =
( Ωc (V , N )Ωp (U , N )
h3 N )
Substituting : S=kInΩ ( U ,V , N )This gives the same Sackur-Tetrode equation for distinguishable
particles as for indistinguishable ones.
b) Helmholtz energy: F=U – TS
dA=−SdT − pdV =−SdT − pdV +∑
j
u j dN j
Where N j=no of particles
u j=corresponding chemical potentials
dA=−SdT −∑
i
ui dNi +∑
j
u j dN jCITATION Vid 08 ¿ 1033(Vidal ,2008)
Probability to find the system in some energy Eigen state r
Pr = e−βEr
Z Whereβ= 1
kT , Z=∑
r
e− βr
U = ⟨ E ⟩=∑
r
Pr Xr= 1
β
∂ logz
∂ x
PVB 301 4
dU = 1
β d ( logZ + βU )−Xdx
dU =Tds−Xdx should hold .
Therefore; S=kInz+ U
T +c(c=0 where is ground state energy ¿
Helmholtz energy; F=−kTInZ =−NkT ∈[ V
h3 ( 2 πmkT )
3
2
]
This gives entropy S=−( ∂ F
∂T )v
= 3
2 Nk + Nk ∈
[ V
h3 ( 2 πmkT )
3
2
]
¿ Nk [ 3
2 −¿ [ λth
3
V ] ] Where λth= h
√ 2 πmkT
3. PLANCK DISTRIBUTION FROM AN IDEAL GAS OF PHOTONS
a) The conduction band edge energy Ec is given with respect to energy of carriers in
the conduction:
k 2=( E−Ec) 2 m¿
ℏ2 ( equation 3)
Differentiating; 2 kdk =2 m¿ dE
ℏ2 (equation 4)
Combining (3) and (4);
dk = m¿ dE
k ℏ2 = m¿ dE
ℏ2 √ 2 m¿(E−Ec)
ℏ2
= m¿ dE
ℏ √ 2 m¿(E−Ec) (Equation 5)
Substituting (5) into (1)
g ( k ) dk = k2 V
π2
m¿ dE
ℏ √2m¿
( E−Ec ) = V [2 m¿ ( E−Ec ) /h2
] ( m¿ dE )
π2 ℏ √2 m¿
( E−Ec ) =V m¿
[ 2 m¿ ( E−Ec ) ] 1
2 dE
π2 h3
The energy of
carriers in the conduction band is given with respect to the conduction band edge energy Ec
dU = 1
β d ( logZ + βU )−Xdx
dU =Tds−Xdx should hold .
Therefore; S=kInz+ U
T +c(c=0 where is ground state energy ¿
Helmholtz energy; F=−kTInZ =−NkT ∈[ V
h3 ( 2 πmkT )
3
2
]
This gives entropy S=−( ∂ F
∂T )v
= 3
2 Nk + Nk ∈
[ V
h3 ( 2 πmkT )
3
2
]
¿ Nk [ 3
2 −¿ [ λth
3
V ] ] Where λth= h
√ 2 πmkT
3. PLANCK DISTRIBUTION FROM AN IDEAL GAS OF PHOTONS
a) The conduction band edge energy Ec is given with respect to energy of carriers in
the conduction:
k 2=( E−Ec) 2 m¿
ℏ2 ( equation 3)
Differentiating; 2 kdk =2 m¿ dE
ℏ2 (equation 4)
Combining (3) and (4);
dk = m¿ dE
k ℏ2 = m¿ dE
ℏ2 √ 2 m¿(E−Ec)
ℏ2
= m¿ dE
ℏ √ 2 m¿(E−Ec) (Equation 5)
Substituting (5) into (1)
g ( k ) dk = k2 V
π2
m¿ dE
ℏ √2m¿
( E−Ec ) = V [2 m¿ ( E−Ec ) /h2
] ( m¿ dE )
π2 ℏ √2 m¿
( E−Ec ) =V m¿
[ 2 m¿ ( E−Ec ) ] 1
2 dE
π2 h3
The energy of
carriers in the conduction band is given with respect to the conduction band edge energy Ec
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
PVB 301 5
(Piroth, 2008):
The number of electron states in the conduction band per unit volume over an energy range dE is
g ( E ) d ( E )= m¿
[ 2 m¿ ( E−Ec ) ]1
2
π 2 h3 dE
We consider an energy range dE and calculate the value of electron states per unit volume in
the conduction band.
g ( E ) d ( E )= m¿
[ 2 m¿ ( E−Ec ) ]1
2
π 2 h3 dE
b) Define N(E) as density of occupied states;
N(E) = 2f(E) ρ(E)
Number of states ; N ( E ) =
( 1
8 × 4
3 π n3)
1 = 1
6 π n3
Since E=ℏ2 π2 n2
2 ma2 therefore n=
( 2 m a2 E
ℏ2 π 2 ) 1
2
Replacing;N ( E )= 1
6 π (2 m a2 E
ℏ2 π2 )3
2 E
3
2
ρ ( E ) = dN ( E )
dE = d
DE [ 1
6 π ( 2 m a2 E
ℏ2 π2 ) 3
2 E
3
2
]
ρ ( E ) = 1
4 π ( 2 m a2
ℏ2 π2 ) 3
2 E
1
2
c) Using partition function Z;
F=−kTlogZ
(Piroth, 2008):
The number of electron states in the conduction band per unit volume over an energy range dE is
g ( E ) d ( E )= m¿
[ 2 m¿ ( E−Ec ) ]1
2
π 2 h3 dE
We consider an energy range dE and calculate the value of electron states per unit volume in
the conduction band.
g ( E ) d ( E )= m¿
[ 2 m¿ ( E−Ec ) ]1
2
π 2 h3 dE
b) Define N(E) as density of occupied states;
N(E) = 2f(E) ρ(E)
Number of states ; N ( E ) =
( 1
8 × 4
3 π n3)
1 = 1
6 π n3
Since E=ℏ2 π2 n2
2 ma2 therefore n=
( 2 m a2 E
ℏ2 π 2 ) 1
2
Replacing;N ( E )= 1
6 π (2 m a2 E
ℏ2 π2 )3
2 E
3
2
ρ ( E ) = dN ( E )
dE = d
DE [ 1
6 π ( 2 m a2 E
ℏ2 π2 ) 3
2 E
3
2
]
ρ ( E ) = 1
4 π ( 2 m a2
ℏ2 π2 ) 3
2 E
1
2
c) Using partition function Z;
F=−kTlogZ
PVB 301 6
F=−kTlog ∏
s=1
r
(1−e− β ∈s )−1
¿−kT ∑
s=1
r
log ( 1−e− β ∈s )−1
¿−kT 2∫ dΓ
h3 log ( 1−e− β ∈s
)−1
AnddΓ =dV 4 π p2 dp , ∈= pc , x=βϵ =βpc
F=−1
3 {−8 π k4
( hc)3 ∫
0
∞
d ( x)3 log ( 1−e− x) }V T 4
I =∫
0
∞
d (x )3 log (1−e−x)− ( x3 ) log ¿|∞0+∫
0
∞
x3 d [ log (1−e−x) ]
(a ¿ lim
x→ ∞
( x)3 log (1−e−x )≈ lim
x→ ∞
x3 e−x →0
(b) lim
x→ 0
(x)3 log (1−e−x )≈ lim
x →0
x3 logx → 0
And I =∫
0
∞
dx x3
ex−1 = π 4
15
F= −1
3 aV T 4
4. HEAT CAPACITY OF PLATINUM
a. Consider the wave vector k =k x , k y , k zand define
lx = k x
|k | ly= k y
|k | lz= k z
|k|
lx
2 +ly
2 +lz
2=1 (1)
Solutions to the wave equation;
F=−kTlog ∏
s=1
r
(1−e− β ∈s )−1
¿−kT ∑
s=1
r
log ( 1−e− β ∈s )−1
¿−kT 2∫ dΓ
h3 log ( 1−e− β ∈s
)−1
AnddΓ =dV 4 π p2 dp , ∈= pc , x=βϵ =βpc
F=−1
3 {−8 π k4
( hc)3 ∫
0
∞
d ( x)3 log ( 1−e− x) }V T 4
I =∫
0
∞
d (x )3 log (1−e−x)− ( x3 ) log ¿|∞0+∫
0
∞
x3 d [ log (1−e−x) ]
(a ¿ lim
x→ ∞
( x)3 log (1−e−x )≈ lim
x→ ∞
x3 e−x →0
(b) lim
x→ 0
(x)3 log (1−e−x )≈ lim
x →0
x3 logx → 0
And I =∫
0
∞
dx x3
ex−1 = π 4
15
F= −1
3 aV T 4
4. HEAT CAPACITY OF PLATINUM
a. Consider the wave vector k =k x , k y , k zand define
lx = k x
|k | ly= k y
|k | lz= k z
|k|
lx
2 +ly
2 +lz
2=1 (1)
Solutions to the wave equation;
PVB 301 7
u ( x , y , z , t )=sin ( 2 πvt ) sin ( 2 π lx x
λ )sin (2 π l y y
λ )sin( 2 π lz z
λ ¿
boundary conditions u = 0 at x , y , z=0 , x=¿ Lx , y=Ly , z =Lz
nx=( 2 lx Lx
λ ), ny= (2 ly Ly
λ ),nz =( 2lz Lz
λ ) (2)
Substituting (2) in (1) and using the relation c= λv;
nx
2
¿ ¿ ¿ ¿
The number of nodes N(v) with a frequency range of 0,v is given by
N ( v ) =¿ ¿ where V =Lx Ly Lz
The waves can be differentiated either once or twice to the longitudinal and then to the transverse
direction respectively (Avison , 2014).
3
c3 = 1
c3
l
+ 2
c3
t
3 N=N vD
=(4 π v D
3 V )
3 c3
Defining vD = k T D
h substituting into N(v) we get Nv =3 N h3 v3
k3 T D
3
Number of particles with energy Ei is ni= 1
A e− Ei/(kT ¿)¿= 1
A e−¿ ¿¿ where Ei=¿
Energy contribution for oscillators with frequency v;
dU ( v )=∑
i=0
∞
Ei
1
A e− Ei/(kT ¿)¿ ¿
dN ( v )= 1
A e
− 1
2 hv/(kT ¿)∑i=0
∞
e−ihv /(kT ¿)= 1
A e−1/2hv
kT
1
1−e
−hv
kT
¿¿
Substituting in the energy equation;
u ( x , y , z , t )=sin ( 2 πvt ) sin ( 2 π lx x
λ )sin (2 π l y y
λ )sin( 2 π lz z
λ ¿
boundary conditions u = 0 at x , y , z=0 , x=¿ Lx , y=Ly , z =Lz
nx=( 2 lx Lx
λ ), ny= (2 ly Ly
λ ),nz =( 2lz Lz
λ ) (2)
Substituting (2) in (1) and using the relation c= λv;
nx
2
¿ ¿ ¿ ¿
The number of nodes N(v) with a frequency range of 0,v is given by
N ( v ) =¿ ¿ where V =Lx Ly Lz
The waves can be differentiated either once or twice to the longitudinal and then to the transverse
direction respectively (Avison , 2014).
3
c3 = 1
c3
l
+ 2
c3
t
3 N=N vD
=(4 π v D
3 V )
3 c3
Defining vD = k T D
h substituting into N(v) we get Nv =3 N h3 v3
k3 T D
3
Number of particles with energy Ei is ni= 1
A e− Ei/(kT ¿)¿= 1
A e−¿ ¿¿ where Ei=¿
Energy contribution for oscillators with frequency v;
dU ( v )=∑
i=0
∞
Ei
1
A e− Ei/(kT ¿)¿ ¿
dN ( v )= 1
A e
− 1
2 hv/(kT ¿)∑i=0
∞
e−ihv /(kT ¿)= 1
A e−1/2hv
kT
1
1−e
−hv
kT
¿¿
Substituting in the energy equation;
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
PVB 301 8
dU =dN ( v ) e− 1
2 hv/(kT ¿) (1−e
−hv
kT )∑
i=0
∞
hv (i + 1
2 )e−1
2 hv/( kT¿)¿
¿
=dN ( v ) hv ¿
Integrating; U =9 N h4
h3 T D
3 ∫
0
vD
¿ ¿
b.
ΘD= cℏ
k [6 π2
( N
V ) ]1
3
N
V = ( 6.02×1023 )
195.1 × 21.4
1× 10−6 =6.6032 ×1028
Speed of sound; 3
c3 = 1
c3
l
+ 2
c3
t
= 1
(3260)3 + 2
(1730)3 =( 4.15134 ×10−10 )
c= 3
√ ( 3
(4.15134 × 10−10 ) )=1933.35
ΘD= cℏ
k [ 6 π2
( N
V ) ] 1
3 = ( 1.054 × 10−34 ×1933.35 )
( 1.38× 10−23 ) × [ 6 π2 × 6.6032×1028 ] 1
3
232.634 K
units
c. Cv
N K
= K T 3= 12 π4
5 ΘD
3 × T 3= 12 π4
5 ×(232.634)3 × 43=1.1884 ×10−3
5. ELECTRONIC PROPERTIES OF POTASSIUM
a. ε F = ℏ2
2m (3 π2 n)
2
3
dU =dN ( v ) e− 1
2 hv/(kT ¿) (1−e
−hv
kT )∑
i=0
∞
hv (i + 1
2 )e−1
2 hv/( kT¿)¿
¿
=dN ( v ) hv ¿
Integrating; U =9 N h4
h3 T D
3 ∫
0
vD
¿ ¿
b.
ΘD= cℏ
k [6 π2
( N
V ) ]1
3
N
V = ( 6.02×1023 )
195.1 × 21.4
1× 10−6 =6.6032 ×1028
Speed of sound; 3
c3 = 1
c3
l
+ 2
c3
t
= 1
(3260)3 + 2
(1730)3 =( 4.15134 ×10−10 )
c= 3
√ ( 3
(4.15134 × 10−10 ) )=1933.35
ΘD= cℏ
k [ 6 π2
( N
V ) ] 1
3 = ( 1.054 × 10−34 ×1933.35 )
( 1.38× 10−23 ) × [ 6 π2 × 6.6032×1028 ] 1
3
232.634 K
units
c. Cv
N K
= K T 3= 12 π4
5 ΘD
3 × T 3= 12 π4
5 ×(232.634)3 × 43=1.1884 ×10−3
5. ELECTRONIC PROPERTIES OF POTASSIUM
a. ε F = ℏ2
2m (3 π2 n)
2
3
PVB 301 9
ℏ=1.055× 10−34 J . s
m=9.20× 10−31 kg
1eV =1.602× 10−19 J
n=(6.02 ×1023)
39.0983 × 0.890
(1 ×10−6 ) ≅ (1.37 ×1028 )/m3
ε F = ( 1.055 ×10−34 ) 2
2× ( 9.20 ×10−31 ) × [ 3 π 2 × ( 1.37× 1028 ) ] 2
3
=3.3147 ×10−19 J
b. eV = 3.3147× 10−19
1.602× 10−19 ≅ 2.069 eV
c. ε F =1
2 m v2
V = √ 2 ε F
m = √ 2 ×3.3147 ×10−19
9.20× 10−31 =8.48873× 105 m/s
d. It is assumed that the valence electrons can be treated as free, or at least moving in a
region of constant potential and non- interacting (Arora, 2013).
ℏ=1.055× 10−34 J . s
m=9.20× 10−31 kg
1eV =1.602× 10−19 J
n=(6.02 ×1023)
39.0983 × 0.890
(1 ×10−6 ) ≅ (1.37 ×1028 )/m3
ε F = ( 1.055 ×10−34 ) 2
2× ( 9.20 ×10−31 ) × [ 3 π 2 × ( 1.37× 1028 ) ] 2
3
=3.3147 ×10−19 J
b. eV = 3.3147× 10−19
1.602× 10−19 ≅ 2.069 eV
c. ε F =1
2 m v2
V = √ 2 ε F
m = √ 2 ×3.3147 ×10−19
9.20× 10−31 =8.48873× 105 m/s
d. It is assumed that the valence electrons can be treated as free, or at least moving in a
region of constant potential and non- interacting (Arora, 2013).
PVB 301 10
References
Arora, C. L. (2013). S.Chand'S Success Guide R/C B.Sc Physics Vol -3. New Delhi: S. Chand Publishing.
Avison , J. (2014). The World of Physics. Cape Town: Nelson Thornes.
Harris, S. (2012). An Introduction to the Theory of the Boltzmann Equation. Chelmsford: Courier
Corporation.
Piroth, A. (2008). Fundamentals of the Physics of Solids: Volume II: Electronic Properties. Berlin: Springer
Science & Business Media.
Santos, L. T., Dorini, F. A., & Cunha, M. C. (2008). The probability density function to the random linear
transport equation. Sao Paulo: Unicamp.
Vidal, J. (2008). Thermodynamics. France: Editions OPHRYS.
References
Arora, C. L. (2013). S.Chand'S Success Guide R/C B.Sc Physics Vol -3. New Delhi: S. Chand Publishing.
Avison , J. (2014). The World of Physics. Cape Town: Nelson Thornes.
Harris, S. (2012). An Introduction to the Theory of the Boltzmann Equation. Chelmsford: Courier
Corporation.
Piroth, A. (2008). Fundamentals of the Physics of Solids: Volume II: Electronic Properties. Berlin: Springer
Science & Business Media.
Santos, L. T., Dorini, F. A., & Cunha, M. C. (2008). The probability density function to the random linear
transport equation. Sao Paulo: Unicamp.
Vidal, J. (2008). Thermodynamics. France: Editions OPHRYS.
1 out of 10
Related Documents
Your All-in-One AI-Powered Toolkit for Academic Success.
+13062052269
info@desklib.com
Available 24*7 on WhatsApp / Email
Unlock your academic potential
© 2024 | Zucol Services PVT LTD | All rights reserved.