This article contains solutions to various Pre-Calculus problems, including trigonometry, circular functions, and more. It also includes a table of contents for easy navigation.
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
Running Head: PRE-CALCULUS Pre-Calculus Name of the student: Name of the university: Course ID:
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
4PRE-CALCULUS The minimum distance x that a plant needing full Sun can be placed from a fence that is 6 feet high. Hence, tan270=6 x Or, x =6 tan270=6 0.50952545=11.78feet. Therefore, the minimum distance is found to be 11.78 feet. Answer 9. The radius of the circle (r) = 9.5 cm. The central angle of the circle (θ) =5Π 12. The arc length of the segment of the circle = r* θ = (9.5*5Π 12¿cm. = (9.5*1.308996939) cm. = 12.4354709205 cm. Answer 10. 10tan3x secx/¿5tanx secx=10tan3x secx*secx 5tanx=2tan2x Answer 11. cos2x−2cosx−8 cosx−4=cos2x−4cosx+2cosx−8 cosx−4=cosx¿¿¿=¿¿ = (cos x + 2). Answer 12. sin−1(−1 2)= -sin−1(1 2)= -Π 6radian =−300
5PRE-CALCULUS Answer 13. cosθ=−3 5 For, quadrant iii, the equation will be- -sin θ =−3 5 Or, θ =1800+sin−13 5=1800+36.869897650=216.869897650 Or, sin (θ 2¿=sin(216.869897650 2)=sin(108.4349488750)=¿¿0.9486833. Or, tan 2θ = tan (433.73979530¿=3.42857143 Or, cos2θ= (cos433.73979530¿¿= 0.28. Answer 14. 2cos(t)=6cos(t)−√12 Or,2cos(t)−6cos(t)=−√12 Or,−4cos(t)=−√12 Or, cos (t) =−√12 −4=2√3 4=√3 2 Or, t =cos−1√3 2 Or, t = 0.86602540378 =(30¿¿0+k∗3600)¿, k = …, -1, 0, 1, … Therefore, the solution is300, [θ is in the range (00,3600¿¿. Answer 15.
6PRE-CALCULUS cos 2x – cos x - 2 = 0 Or,2cos2x−1−cosx−2=0 Or,2cos2x−cosx−3=0 Or,2cos2x+2cosx−3cosx−3=0 Or,2cosx¿¿ Or,¿ Therefore, either¿ Or,cosx=−1 Or, x =cos−1(−1) Or, x =1800+k∗3600, k = …, -1, 0, 1, … Putting k = 0, we get, x =1800 Otherwise,¿ Or, 2cosx=3 Or, cos x =3 2= 1.5 The value of cos (x) must always lie between the range 0 and 1. Therefore, no solution could be found in this regard. That is why, the only solution is =1800, [x is in the range (00,3600¿¿.