Probability Assignment - Statistical Probability and Genetic Analysis
VerifiedAdded on 2022/09/15
|7
|1177
|33
Homework Assignment
AI Summary
This probability assignment explores various concepts including coin flips, probability calculations, and genetic disease analysis. The assignment begins with coin flip scenarios, calculating probabilities for different outcomes like getting heads at least four times or consecutive heads. It then delves into ...

Probability 1
PROBABILITY
by Studentโs Name
Code + Course Name
Professorโs Name
University Name
City, State
Date
PROBABILITY
by Studentโs Name
Code + Course Name
Professorโs Name
University Name
City, State
Date
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

Probability 2
Probability
1. Coin Flips
A โ heads atleast 4
B โ heads equal to tails = 3
C โ consecutive 4 heads
Pr(๐ป) = 1
2 ๐๐๐ Pr(๐) = 1
2
Pr(๐ด)
= ๐๐(๐ป๐ป๐ป๐ป) ๐๐ ๐๐(๐ป๐ป๐ป๐ป๐ป)๐๐ Pr(๐ป๐ป๐ป๐ป๐ป๐ป)๐๐๐๐(๐ป๐ป๐ป๐ป๐)๐๐๐๐(๐ป๐ป๐ป๐ป๐๐)๐๐๐๐(๐ป๐ป๐ป๐ป๐๐ป)
= 1
24 + 1
25 + 1
26 + 1
25 + 1
26 + 1
26
= 11
64
Pr(๐ต) = Pr(๐ป๐ป๐ป) = Pr(๐๐๐)
= 1
2
3
= 1
8
Pr(๐ถ) = Pr(๐ป๐ป๐ป๐ป)
= (1
2)
4
= 1
16
Pr(๐ด/๐ต) = Pr(๐ด) Pr(๐ด โฉ ๐ต)
Pr(๐ต)
=
11
64ร 1
8
1
8
= 11
64
Probability
1. Coin Flips
A โ heads atleast 4
B โ heads equal to tails = 3
C โ consecutive 4 heads
Pr(๐ป) = 1
2 ๐๐๐ Pr(๐) = 1
2
Pr(๐ด)
= ๐๐(๐ป๐ป๐ป๐ป) ๐๐ ๐๐(๐ป๐ป๐ป๐ป๐ป)๐๐ Pr(๐ป๐ป๐ป๐ป๐ป๐ป)๐๐๐๐(๐ป๐ป๐ป๐ป๐)๐๐๐๐(๐ป๐ป๐ป๐ป๐๐)๐๐๐๐(๐ป๐ป๐ป๐ป๐๐ป)
= 1
24 + 1
25 + 1
26 + 1
25 + 1
26 + 1
26
= 11
64
Pr(๐ต) = Pr(๐ป๐ป๐ป) = Pr(๐๐๐)
= 1
2
3
= 1
8
Pr(๐ถ) = Pr(๐ป๐ป๐ป๐ป)
= (1
2)
4
= 1
16
Pr(๐ด/๐ต) = Pr(๐ด) Pr(๐ด โฉ ๐ต)
Pr(๐ต)
=
11
64ร 1
8
1
8
= 11
64

Probability 3
Pr(๐ถ/๐ด) =
Pr(๐ถ) Pr(๐ถ โฉ ๐ด)
Pr(๐ด)
=
1
16ร 1
16
11
64
= 1
44
2. Probability of 5 before 7
A โ d1 + d2 = 7
B โ d1 + d2 = 5
C - ๐ด โช ๐ต
Pr(1, โฆ ,6) = 1
6
The first appearance of A = 1 and 6 or 2 and 5 or 3 and 4 or 4 and 3
While first appearance of B = 1 and 4 or 2 and 3 or 3 and 2 or 4 and 1
๐ด โช ๐ต = (1,6)(1,5)(1,4)(2,3)(2,4)(2,5)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)
Pr(๐ด) = 1
36+ 1
36+ 1
36+ 1
36 = 1
9
Pr(๐ต) = 1
36+ 1
36+ 1
36+ 1
36 = 1
9
Pr(๐ถ) = 12
36
Pr(๐ถ โฉ ๐ด) = 4
36
Pr(๐ด/๐ถ) =
Pr (๐ด) Pr(๐ถ โฉ ๐ด)
Pr(๐ถ)
=
1
9 ร 1
9
12
36
= 1
27
Pr(๐ถ/๐ด) =
Pr(๐ถ) Pr(๐ถ โฉ ๐ด)
Pr(๐ด)
=
1
16ร 1
16
11
64
= 1
44
2. Probability of 5 before 7
A โ d1 + d2 = 7
B โ d1 + d2 = 5
C - ๐ด โช ๐ต
Pr(1, โฆ ,6) = 1
6
The first appearance of A = 1 and 6 or 2 and 5 or 3 and 4 or 4 and 3
While first appearance of B = 1 and 4 or 2 and 3 or 3 and 2 or 4 and 1
๐ด โช ๐ต = (1,6)(1,5)(1,4)(2,3)(2,4)(2,5)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)
Pr(๐ด) = 1
36+ 1
36+ 1
36+ 1
36 = 1
9
Pr(๐ต) = 1
36+ 1
36+ 1
36+ 1
36 = 1
9
Pr(๐ถ) = 12
36
Pr(๐ถ โฉ ๐ด) = 4
36
Pr(๐ด/๐ถ) =
Pr (๐ด) Pr(๐ถ โฉ ๐ด)
Pr(๐ถ)
=
1
9 ร 1
9
12
36
= 1
27
โ This is a preview!โ
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide

Probability 4
3. Four-Door Monte Hall
With four doors, probability of;
Goat door opened Pr(๐บ) = 3
4
Car door opened Pr(๐ถ) = 1
4
i is the door closed but marked
j is a door with goat
i. Probability of winning is Pr(๐ถ) = Pr(๐) = 1
4
ii. Probability of winning given {j} is;
Pr(๐ถ/{๐}) ๐๐๐๐๐๐๐ ๐๐๐๐๐ ๐๐๐ ๐๐๐ค 3
Pr(๐ถ) =1
3
iii. Probability of winning given 2 doors,
Pr (๐ถ /{๐, ๐}) =1
2
4. Estimating Genetic Diseases
Pr(๐ถ) = 1
25, Pr(๐ถ๐ถ) = 1
4, Pr(๐ถโฒ ) = 24
25, Pr(๐ถ๐ถโฒ ) = 3
4
Where, C โ Carrier parent
CC โ Carrier child
i. Probability two uniformly-chosen healthy people have child with CF
3. Four-Door Monte Hall
With four doors, probability of;
Goat door opened Pr(๐บ) = 3
4
Car door opened Pr(๐ถ) = 1
4
i is the door closed but marked
j is a door with goat
i. Probability of winning is Pr(๐ถ) = Pr(๐) = 1
4
ii. Probability of winning given {j} is;
Pr(๐ถ/{๐}) ๐๐๐๐๐๐๐ ๐๐๐๐๐ ๐๐๐ ๐๐๐ค 3
Pr(๐ถ) =1
3
iii. Probability of winning given 2 doors,
Pr (๐ถ /{๐, ๐}) =1
2
4. Estimating Genetic Diseases
Pr(๐ถ) = 1
25, Pr(๐ถ๐ถ) = 1
4, Pr(๐ถโฒ ) = 24
25, Pr(๐ถ๐ถโฒ ) = 3
4
Where, C โ Carrier parent
CC โ Carrier child
i. Probability two uniformly-chosen healthy people have child with CF
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

Probability 5
Pr(๐ถ๐น) = Pr(๐ถ, ๐ถ๐ถ) ๐๐๐ Pr(๐ถ, ๐ถ๐ถ)
= 1
25ร 1
4 ร 1
25ร 1
4 = 1
1000
ii. Probability two randomly โ chosen parents have a non โ carrier child
= Pr(๐ถ, ๐ถ๐ถโฒ )๐๐๐ Pr(๐ถ, ๐ถ๐ถโฒ )
= 1
25ร 3
4 ร 1
25ร 3
4 = 9
1000
iii. Probability a carrier parent and a randomly chosen parent have a CF child
for a carrier parent,Pr(๐ถ๐ถ) = 1
2
๐๐๐ ๐ ๐๐๐๐๐๐๐๐ฆ ๐โ๐๐ ๐๐ ๐๐๐๐๐๐ก,Pr(๐ถ) = 1
25 ๐๐๐ Pr(๐ถ๐ถ) = 1
2
Pr(๐ถ๐น) = ๐๐(๐ถ๐ถ)๐๐๐๐๐(๐ถ, ๐ถ๐ถ)
= 1
2 ร 1
25ร 1
2 = 1
100
iv. The probability that a carrier parent and randomly โ chosen parent have a carrier
child
for a carrier parent,Pr(๐ถ๐ถ) = 1
2 , ๐๐๐ Pr(๐ถ๐ถโฒ) = 1
2
๐๐๐ ๐ ๐๐๐๐๐๐๐๐ฆ ๐โ๐๐ ๐๐ ๐๐๐๐๐๐ก,
Pr(๐ถ) = 1
25 ๐๐๐ Pr(๐ถ๐ถ) = 1
2, ๐๐๐ Pr(๐ถ๐ถโฒ) = 1
2
= Pr(๐ถ๐ถ) ๐๐๐ Pr(๐ถ๐ถโฒ ) ๐๐ Pr(๐ถ๐ถโฒ ) ๐๐๐ Pr(๐ถ๐ถ)
= 1
100+ 1
100= 1
50
Pr(๐ถ๐น) = Pr(๐ถ, ๐ถ๐ถ) ๐๐๐ Pr(๐ถ, ๐ถ๐ถ)
= 1
25ร 1
4 ร 1
25ร 1
4 = 1
1000
ii. Probability two randomly โ chosen parents have a non โ carrier child
= Pr(๐ถ, ๐ถ๐ถโฒ )๐๐๐ Pr(๐ถ, ๐ถ๐ถโฒ )
= 1
25ร 3
4 ร 1
25ร 3
4 = 9
1000
iii. Probability a carrier parent and a randomly chosen parent have a CF child
for a carrier parent,Pr(๐ถ๐ถ) = 1
2
๐๐๐ ๐ ๐๐๐๐๐๐๐๐ฆ ๐โ๐๐ ๐๐ ๐๐๐๐๐๐ก,Pr(๐ถ) = 1
25 ๐๐๐ Pr(๐ถ๐ถ) = 1
2
Pr(๐ถ๐น) = ๐๐(๐ถ๐ถ)๐๐๐๐๐(๐ถ, ๐ถ๐ถ)
= 1
2 ร 1
25ร 1
2 = 1
100
iv. The probability that a carrier parent and randomly โ chosen parent have a carrier
child
for a carrier parent,Pr(๐ถ๐ถ) = 1
2 , ๐๐๐ Pr(๐ถ๐ถโฒ) = 1
2
๐๐๐ ๐ ๐๐๐๐๐๐๐๐ฆ ๐โ๐๐ ๐๐ ๐๐๐๐๐๐ก,
Pr(๐ถ) = 1
25 ๐๐๐ Pr(๐ถ๐ถ) = 1
2, ๐๐๐ Pr(๐ถ๐ถโฒ) = 1
2
= Pr(๐ถ๐ถ) ๐๐๐ Pr(๐ถ๐ถโฒ ) ๐๐ Pr(๐ถ๐ถโฒ ) ๐๐๐ Pr(๐ถ๐ถ)
= 1
100+ 1
100= 1
50

Probability 6
v. The probability baby has CF from two uniformly chosen healthy people
Pr (
๐ถ๐น
๐ถ๐ถ
) = Pr(๐ถ๐น) Pr(๐ถ๐น โฉ ๐ถ๐ถ)
Pr (๐ถ๐ถ)
= Pr(๐ถ๐น)
= 1
25ร 1
4 ร 1
25ร 1
4 = 1
1000
5. Sampling With and Without Replacement
Probability of a cider = 2
๐
With replacement
From the geometric mean, ๐ธ(๐) = 1
๐
= 1
( 2
๐ )
= ๐
2
Without replacement
We have 2
๐
Then ๐โ2
๐ ร 2
๐โ1, ๐โ2
๐ ร ๐โ3
๐โ1 ร 2
๐โ2โฆ
๐ธ(๐) = 2
๐( 1 + 2 (
๐ โ 2
๐ ) + 3 (
๐ โ 2
๐ )
2
+ โฏ ) =
= 2
๐( 2(๐ + 1)
๐ )
= ๐ + 1
3
v. The probability baby has CF from two uniformly chosen healthy people
Pr (
๐ถ๐น
๐ถ๐ถ
) = Pr(๐ถ๐น) Pr(๐ถ๐น โฉ ๐ถ๐ถ)
Pr (๐ถ๐ถ)
= Pr(๐ถ๐น)
= 1
25ร 1
4 ร 1
25ร 1
4 = 1
1000
5. Sampling With and Without Replacement
Probability of a cider = 2
๐
With replacement
From the geometric mean, ๐ธ(๐) = 1
๐
= 1
( 2
๐ )
= ๐
2
Without replacement
We have 2
๐
Then ๐โ2
๐ ร 2
๐โ1, ๐โ2
๐ ร ๐โ3
๐โ1 ร 2
๐โ2โฆ
๐ธ(๐) = 2
๐( 1 + 2 (
๐ โ 2
๐ ) + 3 (
๐ โ 2
๐ )
2
+ โฏ ) =
= 2
๐( 2(๐ + 1)
๐ )
= ๐ + 1
3
โ This is a preview!โ
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide

Probability 7
6. Finding a Healthy Subring
1. ๐ธ(๐)
We have people = n, s = sick people, ๐๐ = ๐๐๐๐๐๐๐๐๐๐ก๐ฆ ๐๐ ๐ ๐๐๐ ๐๐๐๐ ๐๐
๐โ = ๐๐๐๐๐๐๐๐๐๐ก๐ฆ ๐๐ โ๐๐๐๐กโ๐ฆ ๐๐๐๐ ๐๐ ๐ ๐ข๐โ ๐กโ๐๐ก ๐๐ + ๐โ = 1
๐๐ = ๐
๐
Since ๐ = ๐ < 100 ๐๐๐ก๐๐๐๐๐๐ and k=s,
๐~๐ต๐๐(๐, ๐๐ )
๐๐ = ๐
๐
๐กโ๐ข๐ ๐ธ(๐) = ๐๐๐
2.
If n=70, s=39
We have, Pr(๐๐ ) = 39
70 and Pr (๐โ) = 31
70
From a sample of n= 7, we expect Pr(๐๐ ) = 39
70 ร 7 = 4 ๐ก๐ ๐๐ ๐ ๐๐๐
๐๐๐ Pr(๐โ) = 31
70ร 7 = 3 ๐ก๐ ๐๐ โ๐๐๐๐กโ๐ฆ
However, since the sample is random, a consecutive sample ๐0, ๐1, โฆ , ๐6can have a
probability Pr(๐๐ ) โค 3
7 ๐๐๐ Pr(๐โ) โฅ 4
7 while most of the sick people will be on the
6. Finding a Healthy Subring
1. ๐ธ(๐)
We have people = n, s = sick people, ๐๐ = ๐๐๐๐๐๐๐๐๐๐ก๐ฆ ๐๐ ๐ ๐๐๐ ๐๐๐๐ ๐๐
๐โ = ๐๐๐๐๐๐๐๐๐๐ก๐ฆ ๐๐ โ๐๐๐๐กโ๐ฆ ๐๐๐๐ ๐๐ ๐ ๐ข๐โ ๐กโ๐๐ก ๐๐ + ๐โ = 1
๐๐ = ๐
๐
Since ๐ = ๐ < 100 ๐๐๐ก๐๐๐๐๐๐ and k=s,
๐~๐ต๐๐(๐, ๐๐ )
๐๐ = ๐
๐
๐กโ๐ข๐ ๐ธ(๐) = ๐๐๐
2.
If n=70, s=39
We have, Pr(๐๐ ) = 39
70 and Pr (๐โ) = 31
70
From a sample of n= 7, we expect Pr(๐๐ ) = 39
70 ร 7 = 4 ๐ก๐ ๐๐ ๐ ๐๐๐
๐๐๐ Pr(๐โ) = 31
70ร 7 = 3 ๐ก๐ ๐๐ โ๐๐๐๐กโ๐ฆ
However, since the sample is random, a consecutive sample ๐0, ๐1, โฆ , ๐6can have a
probability Pr(๐๐ ) โค 3
7 ๐๐๐ Pr(๐โ) โฅ 4
7 while most of the sick people will be on the
1 out of 7

Your All-in-One AI-Powered Toolkit for Academic Success.
+13062052269
info@desklib.com
Available 24*7 on WhatsApp / Email
Unlock your academic potential
ยฉ 2024 | Zucol Services PVT LTD | All rights reserved.