Assignment about What is Probability?

Verified

Added on Β 2022/09/15

|7
|1177
|33
Assignment
AI Summary

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Probability 1
PROBABILITY
by Student’s Name
Code + Course Name
Professor’s Name
University Name
City, State
Date

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Probability 2
Probability
1. Coin Flips
A – heads atleast 4
B – heads equal to tails = 3
C – consecutive 4 heads
Pr(𝐻) = 1
2 π‘Žπ‘›π‘‘ Pr(𝑇) = 1
2
Pr(𝐴)
= π‘ƒπ‘Ÿ(𝐻𝐻𝐻𝐻) π‘œπ‘Ÿ π‘ƒπ‘Ÿ(𝐻𝐻𝐻𝐻𝐻)π‘œπ‘Ÿ Pr(𝐻𝐻𝐻𝐻𝐻𝐻)π‘œπ‘Ÿπ‘ƒπ‘Ÿ(𝐻𝐻𝐻𝐻𝑇)π‘œπ‘Ÿπ‘ƒπ‘Ÿ(𝐻𝐻𝐻𝐻𝑇𝑇)π‘œπ‘Ÿπ‘ƒπ‘Ÿ(𝐻𝐻𝐻𝐻𝑇𝐻)
= 1
24 + 1
25 + 1
26 + 1
25 + 1
26 + 1
26
= 11
64
Pr(𝐡) = Pr(𝐻𝐻𝐻) = Pr(𝑇𝑇𝑇)
= 1
2
3
= 1
8
Pr(𝐢) = Pr(𝐻𝐻𝐻𝐻)
= (1
2)
4
= 1
16
Pr(𝐴/𝐡) = Pr(𝐴) Pr(𝐴 ∩ 𝐡)
Pr(𝐡)
=
11
64Γ— 1
8
1
8
= 11
64
Document Page
Probability 3
Pr(𝐢/𝐴) =
Pr(𝐢) Pr(𝐢 ∩ 𝐴)
Pr(𝐴)
=
1
16Γ— 1
16
11
64
= 1
44
2. Probability of 5 before 7
A – d1 + d2 = 7
B – d1 + d2 = 5
C - 𝐴 βˆͺ 𝐡
Pr(1, … ,6) = 1
6
The first appearance of A = 1 and 6 or 2 and 5 or 3 and 4 or 4 and 3
While first appearance of B = 1 and 4 or 2 and 3 or 3 and 2 or 4 and 1
𝐴 βˆͺ 𝐡 = (1,6)(1,5)(1,4)(2,3)(2,4)(2,5)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)
Pr(𝐴) = 1
36+ 1
36+ 1
36+ 1
36 = 1
9
Pr(𝐡) = 1
36+ 1
36+ 1
36+ 1
36 = 1
9
Pr(𝐢) = 12
36
Pr(𝐢 ∩ 𝐴) = 4
36
Pr(𝐴/𝐢) =
Pr (𝐴) Pr(𝐢 ∩ 𝐴)
Pr(𝐢)
=
1
9 Γ— 1
9
12
36
= 1
27
Document Page
Probability 4
3. Four-Door Monte Hall
With four doors, probability of;
Goat door opened Pr(𝐺) = 3
4
Car door opened Pr(𝐢) = 1
4
i is the door closed but marked
j is a door with goat
i. Probability of winning is Pr(𝐢) = Pr(𝑖) = 1
4
ii. Probability of winning given {j} is;
Pr(𝐢/{𝑖}) π‘–π‘šπ‘π‘™π‘–π‘’π‘  π‘‘π‘œπ‘œπ‘Ÿπ‘  π‘Žπ‘Ÿπ‘’ π‘›π‘œπ‘€ 3
Pr(𝐢) =1
3
iii. Probability of winning given 2 doors,
Pr (𝐢 /{𝑖, 𝑗}) =1
2
4. Estimating Genetic Diseases
Pr(𝐢) = 1
25, Pr(𝐢𝐢) = 1
4, Pr(𝐢′ ) = 24
25, Pr(𝐢𝐢′ ) = 3
4
Where, C – Carrier parent
CC – Carrier child
i. Probability two uniformly-chosen healthy people have child with CF

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Probability 5
Pr(𝐢𝐹) = Pr(𝐢, 𝐢𝐢) π‘Žπ‘›π‘‘ Pr(𝐢, 𝐢𝐢)
= 1
25Γ— 1
4 Γ— 1
25Γ— 1
4 = 1
1000
ii. Probability two randomly – chosen parents have a non – carrier child
= Pr(𝐢, 𝐢𝐢′ )π‘Žπ‘›π‘‘ Pr(𝐢, 𝐢𝐢′ )
= 1
25Γ— 3
4 Γ— 1
25Γ— 3
4 = 9
1000
iii. Probability a carrier parent and a randomly chosen parent have a CF child
for a carrier parent,Pr(𝐢𝐢) = 1
2
π‘“π‘œπ‘Ÿ π‘Ž π‘Ÿπ‘Žπ‘›π‘‘π‘œπ‘šπ‘™π‘¦ π‘β„Žπ‘œπ‘ π‘’π‘› π‘π‘Žπ‘Ÿπ‘’π‘›π‘‘,Pr(𝐢) = 1
25 π‘Žπ‘›π‘‘ Pr(𝐢𝐢) = 1
2
Pr(𝐢𝐹) = π‘ƒπ‘Ÿ(𝐢𝐢)π‘Žπ‘›π‘‘π‘ƒπ‘Ÿ(𝐢, 𝐢𝐢)
= 1
2 Γ— 1
25Γ— 1
2 = 1
100
iv. The probability that a carrier parent and randomly – chosen parent have a carrier
child
for a carrier parent,Pr(𝐢𝐢) = 1
2 , π‘Žπ‘›π‘‘ Pr(𝐢𝐢′) = 1
2
π‘“π‘œπ‘Ÿ π‘Ž π‘Ÿπ‘Žπ‘›π‘‘π‘œπ‘šπ‘™π‘¦ π‘β„Žπ‘œπ‘ π‘’π‘› π‘π‘Žπ‘Ÿπ‘’π‘›π‘‘,
Pr(𝐢) = 1
25 π‘Žπ‘›π‘‘ Pr(𝐢𝐢) = 1
2, π‘Žπ‘›π‘‘ Pr(𝐢𝐢′) = 1
2
= Pr(𝐢𝐢) π‘Žπ‘›π‘‘ Pr(𝐢𝐢′ ) π‘œπ‘Ÿ Pr(𝐢𝐢′ ) π‘Žπ‘›π‘‘ Pr(𝐢𝐢)
= 1
100+ 1
100= 1
50
Document Page
Probability 6
v. The probability baby has CF from two uniformly chosen healthy people
Pr (
𝐢𝐹
𝐢𝐢
) = Pr(𝐢𝐹) Pr(𝐢𝐹 ∩ 𝐢𝐢)
Pr (𝐢𝐢)
= Pr(𝐢𝐹)
= 1
25Γ— 1
4 Γ— 1
25Γ— 1
4 = 1
1000
5. Sampling With and Without Replacement
Probability of a cider = 2
𝑛
With replacement
From the geometric mean, 𝐸(𝑋) = 1
𝑝
= 1
( 2
𝑛 )
= 𝑛
2
Without replacement
We have 2
𝑛
Then π‘›βˆ’2
𝑛 Γ— 2
π‘›βˆ’1, π‘›βˆ’2
𝑛 Γ— π‘›βˆ’3
π‘›βˆ’1 Γ— 2
π‘›βˆ’2…
𝐸(𝑋) = 2
𝑛( 1 + 2 (
𝑛 βˆ’ 2
𝑛 ) + 3 (
𝑛 βˆ’ 2
𝑛 )
2
+ β‹― ) =
= 2
𝑛( 2(𝑛 + 1)
𝑛 )
= 𝑛 + 1
3
Document Page
Probability 7
6. Finding a Healthy Subring
1. 𝐸(𝑋)
We have people = n, s = sick people, 𝑝𝑠 = π‘π‘Ÿπ‘œπ‘π‘Žπ‘π‘–π‘™π‘–π‘‘π‘¦ π‘œπ‘“ π‘ π‘–π‘π‘˜ π‘π‘’π‘Ÿπ‘ π‘œπ‘›
π‘β„Ž = π‘π‘Ÿπ‘œπ‘π‘Žπ‘π‘–π‘™π‘–π‘‘π‘¦ π‘œπ‘“ β„Žπ‘’π‘Žπ‘™π‘‘β„Žπ‘¦ π‘π‘’π‘Ÿπ‘ π‘œπ‘› π‘ π‘’π‘β„Ž π‘‘β„Žπ‘Žπ‘‘ 𝑝𝑠 + π‘β„Ž = 1
𝑝𝑠 = 𝑠
𝑛
Since 𝑛 = π‘˜ < 100 π‘–π‘›π‘‘π‘’π‘Ÿπ‘”π‘’π‘Ÿπ‘ and k=s,
𝑋~𝐡𝑖𝑛(π‘˜, 𝑝𝑠)
𝑝𝑠 = 𝑠
π‘˜
π‘‘β„Žπ‘’π‘  𝐸(𝑋) = π‘˜π‘π‘ 
2.
If n=70, s=39
We have, Pr(𝑝𝑠) = 39
70 and Pr (π‘β„Ž) = 31
70
From a sample of n= 7, we expect Pr(𝑝𝑠) = 39
70 Γ— 7 = 4 π‘‘π‘œ 𝑏𝑒 π‘ π‘–π‘π‘˜
π‘Žπ‘›π‘‘ Pr(π‘β„Ž) = 31
70Γ— 7 = 3 π‘‘π‘œ 𝑏𝑒 β„Žπ‘’π‘Žπ‘™π‘‘β„Žπ‘¦
However, since the sample is random, a consecutive sample 𝑝0, 𝑝1, … , 𝑝6can have a
probability Pr(𝑝𝑠) ≀ 3
7 π‘Žπ‘›π‘‘ Pr(π‘β„Ž) β‰₯ 4
7 while most of the sick people will be on the
1 out of 7
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]