Assignment about What is Probability?
VerifiedAdded on Β 2022/09/15
|7
|1177
|33
Assignment
AI Summary
Contribute Materials
Your contribution can guide someoneβs learning journey. Share your
documents today.
Probability 1
PROBABILITY
by Studentβs Name
Code + Course Name
Professorβs Name
University Name
City, State
Date
PROBABILITY
by Studentβs Name
Code + Course Name
Professorβs Name
University Name
City, State
Date
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
Probability 2
Probability
1. Coin Flips
A β heads atleast 4
B β heads equal to tails = 3
C β consecutive 4 heads
Pr(π») = 1
2 πππ Pr(π) = 1
2
Pr(π΄)
= ππ(π»π»π»π») ππ ππ(π»π»π»π»π»)ππ Pr(π»π»π»π»π»π»)ππππ(π»π»π»π»π)ππππ(π»π»π»π»ππ)ππππ(π»π»π»π»ππ»)
= 1
24 + 1
25 + 1
26 + 1
25 + 1
26 + 1
26
= 11
64
Pr(π΅) = Pr(π»π»π») = Pr(πππ)
= 1
2
3
= 1
8
Pr(πΆ) = Pr(π»π»π»π»)
= (1
2)
4
= 1
16
Pr(π΄/π΅) = Pr(π΄) Pr(π΄ β© π΅)
Pr(π΅)
=
11
64Γ 1
8
1
8
= 11
64
Probability
1. Coin Flips
A β heads atleast 4
B β heads equal to tails = 3
C β consecutive 4 heads
Pr(π») = 1
2 πππ Pr(π) = 1
2
Pr(π΄)
= ππ(π»π»π»π») ππ ππ(π»π»π»π»π»)ππ Pr(π»π»π»π»π»π»)ππππ(π»π»π»π»π)ππππ(π»π»π»π»ππ)ππππ(π»π»π»π»ππ»)
= 1
24 + 1
25 + 1
26 + 1
25 + 1
26 + 1
26
= 11
64
Pr(π΅) = Pr(π»π»π») = Pr(πππ)
= 1
2
3
= 1
8
Pr(πΆ) = Pr(π»π»π»π»)
= (1
2)
4
= 1
16
Pr(π΄/π΅) = Pr(π΄) Pr(π΄ β© π΅)
Pr(π΅)
=
11
64Γ 1
8
1
8
= 11
64
Probability 3
Pr(πΆ/π΄) =
Pr(πΆ) Pr(πΆ β© π΄)
Pr(π΄)
=
1
16Γ 1
16
11
64
= 1
44
2. Probability of 5 before 7
A β d1 + d2 = 7
B β d1 + d2 = 5
C - π΄ βͺ π΅
Pr(1, β¦ ,6) = 1
6
The first appearance of A = 1 and 6 or 2 and 5 or 3 and 4 or 4 and 3
While first appearance of B = 1 and 4 or 2 and 3 or 3 and 2 or 4 and 1
π΄ βͺ π΅ = (1,6)(1,5)(1,4)(2,3)(2,4)(2,5)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)
Pr(π΄) = 1
36+ 1
36+ 1
36+ 1
36 = 1
9
Pr(π΅) = 1
36+ 1
36+ 1
36+ 1
36 = 1
9
Pr(πΆ) = 12
36
Pr(πΆ β© π΄) = 4
36
Pr(π΄/πΆ) =
Pr (π΄) Pr(πΆ β© π΄)
Pr(πΆ)
=
1
9 Γ 1
9
12
36
= 1
27
Pr(πΆ/π΄) =
Pr(πΆ) Pr(πΆ β© π΄)
Pr(π΄)
=
1
16Γ 1
16
11
64
= 1
44
2. Probability of 5 before 7
A β d1 + d2 = 7
B β d1 + d2 = 5
C - π΄ βͺ π΅
Pr(1, β¦ ,6) = 1
6
The first appearance of A = 1 and 6 or 2 and 5 or 3 and 4 or 4 and 3
While first appearance of B = 1 and 4 or 2 and 3 or 3 and 2 or 4 and 1
π΄ βͺ π΅ = (1,6)(1,5)(1,4)(2,3)(2,4)(2,5)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)
Pr(π΄) = 1
36+ 1
36+ 1
36+ 1
36 = 1
9
Pr(π΅) = 1
36+ 1
36+ 1
36+ 1
36 = 1
9
Pr(πΆ) = 12
36
Pr(πΆ β© π΄) = 4
36
Pr(π΄/πΆ) =
Pr (π΄) Pr(πΆ β© π΄)
Pr(πΆ)
=
1
9 Γ 1
9
12
36
= 1
27
Probability 4
3. Four-Door Monte Hall
With four doors, probability of;
Goat door opened Pr(πΊ) = 3
4
Car door opened Pr(πΆ) = 1
4
i is the door closed but marked
j is a door with goat
i. Probability of winning is Pr(πΆ) = Pr(π) = 1
4
ii. Probability of winning given {j} is;
Pr(πΆ/{π}) πππππππ πππππ πππ πππ€ 3
Pr(πΆ) =1
3
iii. Probability of winning given 2 doors,
Pr (πΆ /{π, π}) =1
2
4. Estimating Genetic Diseases
Pr(πΆ) = 1
25, Pr(πΆπΆ) = 1
4, Pr(πΆβ² ) = 24
25, Pr(πΆπΆβ² ) = 3
4
Where, C β Carrier parent
CC β Carrier child
i. Probability two uniformly-chosen healthy people have child with CF
3. Four-Door Monte Hall
With four doors, probability of;
Goat door opened Pr(πΊ) = 3
4
Car door opened Pr(πΆ) = 1
4
i is the door closed but marked
j is a door with goat
i. Probability of winning is Pr(πΆ) = Pr(π) = 1
4
ii. Probability of winning given {j} is;
Pr(πΆ/{π}) πππππππ πππππ πππ πππ€ 3
Pr(πΆ) =1
3
iii. Probability of winning given 2 doors,
Pr (πΆ /{π, π}) =1
2
4. Estimating Genetic Diseases
Pr(πΆ) = 1
25, Pr(πΆπΆ) = 1
4, Pr(πΆβ² ) = 24
25, Pr(πΆπΆβ² ) = 3
4
Where, C β Carrier parent
CC β Carrier child
i. Probability two uniformly-chosen healthy people have child with CF
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
Probability 5
Pr(πΆπΉ) = Pr(πΆ, πΆπΆ) πππ Pr(πΆ, πΆπΆ)
= 1
25Γ 1
4 Γ 1
25Γ 1
4 = 1
1000
ii. Probability two randomly β chosen parents have a non β carrier child
= Pr(πΆ, πΆπΆβ² )πππ Pr(πΆ, πΆπΆβ² )
= 1
25Γ 3
4 Γ 1
25Γ 3
4 = 9
1000
iii. Probability a carrier parent and a randomly chosen parent have a CF child
for a carrier parent,Pr(πΆπΆ) = 1
2
πππ π ππππππππ¦ πβππ ππ ππππππ‘,Pr(πΆ) = 1
25 πππ Pr(πΆπΆ) = 1
2
Pr(πΆπΉ) = ππ(πΆπΆ)πππππ(πΆ, πΆπΆ)
= 1
2 Γ 1
25Γ 1
2 = 1
100
iv. The probability that a carrier parent and randomly β chosen parent have a carrier
child
for a carrier parent,Pr(πΆπΆ) = 1
2 , πππ Pr(πΆπΆβ²) = 1
2
πππ π ππππππππ¦ πβππ ππ ππππππ‘,
Pr(πΆ) = 1
25 πππ Pr(πΆπΆ) = 1
2, πππ Pr(πΆπΆβ²) = 1
2
= Pr(πΆπΆ) πππ Pr(πΆπΆβ² ) ππ Pr(πΆπΆβ² ) πππ Pr(πΆπΆ)
= 1
100+ 1
100= 1
50
Pr(πΆπΉ) = Pr(πΆ, πΆπΆ) πππ Pr(πΆ, πΆπΆ)
= 1
25Γ 1
4 Γ 1
25Γ 1
4 = 1
1000
ii. Probability two randomly β chosen parents have a non β carrier child
= Pr(πΆ, πΆπΆβ² )πππ Pr(πΆ, πΆπΆβ² )
= 1
25Γ 3
4 Γ 1
25Γ 3
4 = 9
1000
iii. Probability a carrier parent and a randomly chosen parent have a CF child
for a carrier parent,Pr(πΆπΆ) = 1
2
πππ π ππππππππ¦ πβππ ππ ππππππ‘,Pr(πΆ) = 1
25 πππ Pr(πΆπΆ) = 1
2
Pr(πΆπΉ) = ππ(πΆπΆ)πππππ(πΆ, πΆπΆ)
= 1
2 Γ 1
25Γ 1
2 = 1
100
iv. The probability that a carrier parent and randomly β chosen parent have a carrier
child
for a carrier parent,Pr(πΆπΆ) = 1
2 , πππ Pr(πΆπΆβ²) = 1
2
πππ π ππππππππ¦ πβππ ππ ππππππ‘,
Pr(πΆ) = 1
25 πππ Pr(πΆπΆ) = 1
2, πππ Pr(πΆπΆβ²) = 1
2
= Pr(πΆπΆ) πππ Pr(πΆπΆβ² ) ππ Pr(πΆπΆβ² ) πππ Pr(πΆπΆ)
= 1
100+ 1
100= 1
50
Probability 6
v. The probability baby has CF from two uniformly chosen healthy people
Pr (
πΆπΉ
πΆπΆ
) = Pr(πΆπΉ) Pr(πΆπΉ β© πΆπΆ)
Pr (πΆπΆ)
= Pr(πΆπΉ)
= 1
25Γ 1
4 Γ 1
25Γ 1
4 = 1
1000
5. Sampling With and Without Replacement
Probability of a cider = 2
π
With replacement
From the geometric mean, πΈ(π) = 1
π
= 1
( 2
π )
= π
2
Without replacement
We have 2
π
Then πβ2
π Γ 2
πβ1, πβ2
π Γ πβ3
πβ1 Γ 2
πβ2β¦
πΈ(π) = 2
π( 1 + 2 (
π β 2
π ) + 3 (
π β 2
π )
2
+ β― ) =
= 2
π( 2(π + 1)
π )
= π + 1
3
v. The probability baby has CF from two uniformly chosen healthy people
Pr (
πΆπΉ
πΆπΆ
) = Pr(πΆπΉ) Pr(πΆπΉ β© πΆπΆ)
Pr (πΆπΆ)
= Pr(πΆπΉ)
= 1
25Γ 1
4 Γ 1
25Γ 1
4 = 1
1000
5. Sampling With and Without Replacement
Probability of a cider = 2
π
With replacement
From the geometric mean, πΈ(π) = 1
π
= 1
( 2
π )
= π
2
Without replacement
We have 2
π
Then πβ2
π Γ 2
πβ1, πβ2
π Γ πβ3
πβ1 Γ 2
πβ2β¦
πΈ(π) = 2
π( 1 + 2 (
π β 2
π ) + 3 (
π β 2
π )
2
+ β― ) =
= 2
π( 2(π + 1)
π )
= π + 1
3
Probability 7
6. Finding a Healthy Subring
1. πΈ(π)
We have people = n, s = sick people, ππ = ππππππππππ‘π¦ ππ π πππ ππππ ππ
πβ = ππππππππππ‘π¦ ππ βππππ‘βπ¦ ππππ ππ π π’πβ π‘βππ‘ ππ + πβ = 1
ππ = π
π
Since π = π < 100 πππ‘ππππππ and k=s,
π~π΅ππ(π, ππ )
ππ = π
π
π‘βπ’π πΈ(π) = πππ
2.
If n=70, s=39
We have, Pr(ππ ) = 39
70 and Pr (πβ) = 31
70
From a sample of n= 7, we expect Pr(ππ ) = 39
70 Γ 7 = 4 π‘π ππ π πππ
πππ Pr(πβ) = 31
70Γ 7 = 3 π‘π ππ βππππ‘βπ¦
However, since the sample is random, a consecutive sample π0, π1, β¦ , π6can have a
probability Pr(ππ ) β€ 3
7 πππ Pr(πβ) β₯ 4
7 while most of the sick people will be on the
6. Finding a Healthy Subring
1. πΈ(π)
We have people = n, s = sick people, ππ = ππππππππππ‘π¦ ππ π πππ ππππ ππ
πβ = ππππππππππ‘π¦ ππ βππππ‘βπ¦ ππππ ππ π π’πβ π‘βππ‘ ππ + πβ = 1
ππ = π
π
Since π = π < 100 πππ‘ππππππ and k=s,
π~π΅ππ(π, ππ )
ππ = π
π
π‘βπ’π πΈ(π) = πππ
2.
If n=70, s=39
We have, Pr(ππ ) = 39
70 and Pr (πβ) = 31
70
From a sample of n= 7, we expect Pr(ππ ) = 39
70 Γ 7 = 4 π‘π ππ π πππ
πππ Pr(πβ) = 31
70Γ 7 = 3 π‘π ππ βππππ‘βπ¦
However, since the sample is random, a consecutive sample π0, π1, β¦ , π6can have a
probability Pr(ππ ) β€ 3
7 πππ Pr(πβ) β₯ 4
7 while most of the sick people will be on the
1 out of 7
Your All-in-One AI-Powered Toolkit for Academic Success.
Β +13062052269
info@desklib.com
Available 24*7 on WhatsApp / Email
Unlock your academic potential
Β© 2024 Β | Β Zucol Services PVT LTD Β | Β All rights reserved.