Your contribution can guide someone’s learning journey. Share your
documents today.
STATISTICS CS202 Problem 1 a) Assume that p=11 and Z*={1,2,3,4,5,6,7,8,9,10} which has got the order of p-1 =11-1 =10. i0123456789 2imod 11 12485109736 5imod 11 1534915349 b) Two elements would generate the entire group of Z*11.These includes; [2]={1,2,3,4,5,6,7,8,9,10} [5]={1,3,4,5,9} c) m=φ(11)=10 From the factorization of 10 we get 21.51 a2≠1(mod11)and a5≠1(mod11)
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
a12345678910 a 2mod 11 1495335941 a5 mod 11 110111101010110 Gen (Z*11)={2,6,7,8} |Z*11|=10 ,Z*10={1,3,7,9} The Inverse: {2i ∈G::i∈Z*10}={21,23,27,29(mod 11)}=[2,6,7,8} Problem 2 Consider all the elements in G24and write down the table for the group. G24={1,5,7,11,13,17,19,23} 1571113171923 11571113171923 55711131719231 77111317192315 111113171923157 131317192315711 171719231571113 191923157111317 232315711131723 For any element G(24),there is an inverse, given as ; 1-1=1,5-1=5,7-1=7,11-1=11,13-1=13,17-1=17,19-1=19,23-1=23
Problem 3 Problem 3 a For non-zero integers of a and b,you can write; a * x +b * y=1 a *x + b* y=+1 Apply mod b on both sides to get; a * x mob b =1 mod b This explains x to be a modular of a. Hence you can calculate the inverse : First step Apply the Euclidean Algorithm to find gcd(23,9) 23=9*2 +5 9=5 *1 +4 5=4 *1 +1 4=1*4 +0 gcd (23,9)=gcd(5,4) =gcd(4,1)=gcd(1,0)=1 Second Step Apply the extended Euclidean algorithm to get x and y Write the equation on the right in terms of a=23,b=9 23=1a +0b
9=0a + 1 b 23 =9 * 2 +5 9=5*1+4 5=4*1+1 4=1*4 +0 23= 1a +ob 9=0a + 1b 5=1a -2b 4=-1a +3b 1=2a -5b Problem 3 b Consider the equation 23=9*2 +5 Rearrange the equation to 5=23-2*9 But from our previous equation; 23=1a + 0b 9=0a + 1b Therefore , 5=(1a+0b)-2*(0a +1b) 5=1a-2b
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
You can realize that 1=2a -5b And this gives 1=2*23-5* 9 Hence X=2,y=-5 as the solution to 23* x+9*y=1 Hence 2 is the modular of 23 (mod 9) And this results to the case: 23*2 mod9=46mod 9=1 Problem 4 a) You are to select two prisons i.e p=59 and q=101 Compute N=pq =101*59 =5959 Computeφ(N)=(p-1)(q-1) =(101-1)(59-1) =5800 b) Consider x and y as integers such that gcd(421,111)=421x+111y Hence a=421 ,b=111
You can work backward line in the Euclidean Algorithm as illustrated. 1=4-1*3 1=4-1 x(19-4 x 4 1=-1 x 19 +5 x 4 1=-1x 19 +5 x(23-1x19) 1=5x23-6x19 1=5x 23-6x(88-3x23) 1=-6 x 88 +23 x 23 1=23 x111 -29 X(421-3X111) 1=-29x421 +110+110 Thus x=-29,and y=110 Rearrange the equation and substitute the lower factor of the Euclidean algorithm. Xa +yb=-29x 421 +110x111 =-12209 +12210 =1 C) Cd=1 modφ 41d=1mod 5800 d =3 d)
a=bdmod N =25079mod 5959 =3533 Problem 5 Consider a QFT operator defined to act as a single qubit states Ѱ=α|0) +β|1) Hence x0=αand x1=β1 Y0=1 √2(αexp(2i⫪0+φ 2)+ βexp(2I⫪1∗0 2))=1 √2(α+β) Y1=1 √2(αexp(2I⫪0+1 2)+ βexp(2I⫪1∗1 2)=1 √2(α+β) UQFT=1 √2(α+β)|1) You can apply the Hadamand operator (H) on the qubit; |=α|) +β|x]Ѱ 1 √2(α+β)0) +1 √2(α+β)|1)=α|0)+β|1) =1