Approximating Error in (16.04)^4

Verified

Added on  2023/01/16

|7
|1416
|47
AI Summary
This article explains how to approximate the error in (16.04)^4 by (16)^4 using the mean value theorem. It provides step-by-step calculations and explanations.
tabler-icon-diamond-filled.svg

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
QUESTION 1
π1 :
( x1
x2
x3
) =
( 1
3
2 ) + λ1
( 2
2
1 )+ λ2
( 3
0
3 )
π2 :
(x1
x2
x3
)=
( 1
0
1 )+μ1
( 2
1
2 )+ μ2
(3
3
0 )
a.
n1=¿ 3 ,0,3> x <2 ,2,1> ¿
¿
|i j k
3 0 3
2 2 1|=| 0 3
2 1|i|3 3
2 1| j+|3 0
2 2|k=6 i+3 j6 k
Factorizing to get unit normal vector,
n1=¿ 2,1,2>¿
n2 =¿ 3,3,0> x<2,1,2>¿
¿
|i j k
3 3 0
2 1 2|=|3 0
1 2|i|3 0
2 2| j+|3 3
2 1|k =6 i+6 j3 k
Factorizing to get unit normal vector,
n2 =¿ 2,2 ,1>¿
The elements of the normal vectors of the planes are neither the same nor multiples of each other
hence their cross product is not a zero. Therefore, the two planes are not parallel and must
intersect at a given point or line.
b. Cartesian forms of the equations
For plane π1 , the parametric equations are:
x1=1+2 λ1 +3 λ2 (i)
x2=32 λ1 (ii)
x3=2+ λ1+3 λ2 (iii)
¿ ( i ) ,
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
2 λ1=x113 λ2
Replacing this ( ii ) ,
x2=3 ( x113 λ2 ) =2x1 +3 λ2
So that ,
3 λ2 =x2 +x1 +2λ1=3
2 x2
2
Replacing theabove two equations ( iii ) ,
x3=2+ λ1+3 λ2=2 3
2 x2
2 +x2+x1 +2
x3= 5
2 + x2
2 + x1
arrangingsimplyfying the above equation ,
x1+ x2
2 x3 + 5
2 =0
The cartesian equation of π1 is;
2 x1 + x22 x3+5=0
For plane π2 , the parametric equations are:
x1=1+2 μ1+3 μ2 (i)
x2=μ1 +3 μ2 (ii)
x3=12 μ1 (iii )
¿ ( i ) ,
3 μ2=x112 μ1
Replacing this ( ii ) ,
x2=μ1 + x112 μ1=x11μ1
So that ,
μ1=x1x21
Replacing theabove equation ( iii ) ,
x3=12(x1x2 1)
x3=12 x1 +2 x2 +2 ¿
arrangingsimplyfying the above equation , cartesianequation of π2 is ;
2 x1 2 x2 + x31=0
c. Let x1=ω,
The cartesian equation s thus reduces ¿ ;
2 ω2 x2 +x31=0
2 ω+ x22 x3+ 5=0
Expressing x2 terms of ω ,
x3=1+2 x2 2 ω
Document Page
2 ω+ x22 x3+ 5=0
2 ω+ x22 ( 1+2 x2 2 ω ) +5=0
3 x2=6 ω+3
x2=1+2 ω
Expressing x3 terms of ω ,
2 ω+ x22 x3+ 5=0
x2=2 x32 ω5
2 ω2 x2 +x31=0
2 ω2 ( 2 x32 ω5 )+ x31=0
3 x3=9+6 ω
x3=3+2 ω
Hence the line of intersection takes the parametric vector form
L=¿ 0,1,3>+ ω<1,2,2>¿
d.
x1=1+2 μ1+3 μ2
x2=μ1 +3 μ2
x3=12 μ1
Replacing the above equationsthe cartesian equation of plane1 ,
2 x1 + x22 x3+5=0
2 ( 1+2 μ1+3 μ2 ) + μ1 +3 μ22 ( 12 μ1 ) +5=0
9 μ1 +9 μ2 +9=0
μ1 + μ2 +1=0
L=¿ 1,1,0>+¿1 , 2 ,2> μ
e. The parametric equations, though slightly different, represents the same line due to the
same vector direction obtained in both cases.
f.
m=n1 x n2
¿<2,1 ,2>x<2,2,1>¿
Document Page
¿
|i j k
2 1 2
2 2 1 |=| 1 2
2 1 |i|2 2
2 1 | j+|2 1
2 2|k
¿3 i6 j6 k
= <1, 2, 2>
¿ show that mis¿ the line , cross product of thetwo vector directions isevaluated
m x lc=¿3 ,6 ,6> x <1,2,2>¿
¿
| i j k
3 6 6
1 2 2 |=|6 6
2 2 |i|3 6
1 2 | j+|3 6
1 2 |k
= <0, 0, 0>
Hence the vector mis¿ the line of ¿
g. The line intersects both the planes with a direction vector m=n1 x n2 because m is
perpendicular to both the normal vectors n1n2 and is therefore parallel to the two planes.
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
QUESTION 2
To show that the equation, e7 x+6 cos ( 8 x ) =0 , has a unique solution over the interval [0, π
8 ],
Let e7 x+6 cos ( 8 x ) be a given function say f ( x )
i .e . f ( x )=e7 x +6 cos ( 8 x )
This function , f ( x ) ,is continous
the given interval
Step 1: ¿ the given interval ,the function f ( x )=0 is first shown ¿ haveat least
one solution .
Replacing thelower theupper values of the interval given ,
f ( 0 ) =e7 (0)+6 cos ( 0 ) =7
f ( π
8 )=e7 ( π
8 )+ 6 cos ( π
8 )=5.607
Both f ( 0 ) f ( π
8 ) are greater than zerothus there exist no f ( c ) =0 for some
c theinterval [ 0 , π
8 ] intermediate valuetheorem
Step 2: f ( x ) =0is then shown ¿ have at most one solution theinterval [ 0 , π
8 ]
By first assuming that more than one solution exist for
f ( x )=0 ,two arbitrary values are picked ; say x=a , x=ba <b
Because of the continuity of f on [ a , b ] , its differentiability on ( a ,b ) the that!
f ( a )=f ( b )=0; by Roll e' s theorem, for some d theinterval ( a , b ) ,follows that
f ' ( d )=0
But ,
Document Page
f ' ( x )=7 e7 x48 sin ( 8 x ) <0 for all values of x the interval [0 , π
8 ]
i .e .sin ( 8 x ) e7 x are both positivethe intervalthus the of their negationmust yield
negative values .
Thisis an implication that f ' ( d ) can never be 0;
f ' ( d ) 0
Therefore , a contradiction o ccur depicting that f ( x ) =0 has at most one solution¿
the interval [ 0 , π
8 ] . Coupling this reasoning withthe that!f ( x ) =0 has got at
at least one solution ,is reasonable ¿ conclude that theequation has aunique solutionthe
interval provided .
QUESTION 3
To approximate the error in ( 16.04 )
1
4 by ( 16 )
1
4 ,
Let a function f ( x ) =x4 such that f ( 16 ) =16
1
4 =2
f ' ( x )= 1
4 x
3
4
so that ,
f ' ( 16 ) = 1
4 ( 16 )
3
4 = 1
32
Using mean value theorem ,
Error , F ( x )=f ( 16 ) + f ' ( 16 ) ( x16 )
¿ 2+ 1
32 ( x16 )
F ( 16.04 )=2+ 1
32 ( 16.0416 )
¿ 2.00125
Document Page
chevron_up_icon
1 out of 7
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]