Probability & Stats: Hypothesis Testing and Distributions

Verified

Added on  2023/04/25

|8
|1004
|492
Homework Assignment
AI Summary
Document Page
Question 4
n = 277
x = 69
^p= x
n = 69
277 =0.2491
79.6% confidence interval for portion of adult female shopper who request a rain check in such
situation
= ^p ¿ ¿α/2 * ^p(1 ^p)
n )
Zα/2 value of 79.6% confidence level is determined as follows;
The confidence level would be subtracted from 1 and the result divided by two in order to find
the value of alpha level which will be representing the one tail area.
(1 – 0.796)/2 = 0.102
Subtract the result from one, the area is then looked at the middle of the z – table in order to
determine the value of the z score.
1 – 0.102 = 0.898
Checking it at z – table as shown
Z – score = 1.27) as highlighted on the z- table diagram below)
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
= ^p ¿ ¿α/2 * ^p(1 ^p)
n )
= 0.2491 ( 1.27 0.2491(10.2491)
277 ) ¿+ ¿¿ ¿
= 0.2491 0.33002 ¿+¿ ¿ ¿
79.6% CI = (0.2821, 0.2161)
b)
^p= 69
277 =0.2491
q = 1 - ^p = 1 – 0.2491 = 0.7509
Margin error = 0.1/2 = 0.05
For 95% confidence, the value of z will be equivalent to 1.96
Document Page
Size of sample required will be equivalent to
n = pq* ( z score
E )
2
= 0.2491 * 0.7509* ( 1.96
0.05 )2
n = 287.427
n 287 (rounded off to next whole number)
Question 7
P(number 2 or less) = 2 / 6 = 1 / 3
Mean = np = 500 * 1/3 = 166.6667
Standard deviation = (np(1 p))
= ( 5001
3 2/3)
= 10.5409
Using normal approximation.,
P( X x) = P( Z < x+0.5 - mean / SD)
So,
P(X 150) = P( Z ¿150.5 - 166.6667 / 10.5409))
= P (Z -1.5337)
From the z-table shown on the diagram below, the probability will be equivalent to;
Document Page
P(X 150¿= 0.0630
b)
The PDF of normal distribution is = 1
σ 2 πe
( xu )2
2 σ 2
The equation of the normal curve is ( Z )= x - u
sd u ~ N(0,1)
The mean ( u ) = 65
standard Deviation ( sd )= 10
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
i)
P ( Z > x )=0.1
The z value having a probability value of 0.1 from the z – table = 1.2816
p ( xu
s . d > x 65
10 )=0.1
Since, we are supposed to determine score required for an applicant to be in the top 10%.
The probability will be 1 – 0.1 = 0.9
The z value will be determined by interpolation between 1.28 and 1.29 to determine 1.2816
That is, ( x - 65/10) = 1.2816
x = 1.2816 * 10 + 65 = 77.8155
Document Page
ii)
The PDF of normal distribution is = 1
σ 2 πe
( xu )2
2 σ 2
The equation of the normal curve is ( Z )= x - u
sd u ~ N(0,1)
mean of the sampling distribution ( x ) = 65
standard Deviation ( sd )= 10/ Sqrt ( 16 ) =2.5
sample size (n) = 16
P(X > 70) = (70-65)/10/ 16
= 5
2.5 = 2
= P ( Z >2) From Standard Normal Table
= 1-0.9772
Document Page
= 0.0228
Question 8
n = 7, x= x
n = 49.3
7 =7.0429
s.d = 1
n1 ¿ ¿
= 1
6 ¿ ¿ = 0.5028
a) 98% confidence interval for population mean
df =7 -1 = 6
t = 3.1427 from the t –distribution diagram above
= x ¿¿ = 7.0429¿ ¿)
98% CI = (6.4457, 7.6401)
b) H0: u = 7.5
Versus, H0 < 7.5
α =1 % level
Test statistic, t = xu
sd / n = 7.04297.5
0.5028/ 7
t = -2.4053
P-value = 0.0265
P-value >
Tailed to reject H0
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
There is no evidence to support the claim that population less than 7.5
Question 8
a) P ( 0.5< x <2 )x 3
= P [ ( 0.5< x< 2 ) ( x 3 ) ]
p ( x 3)
= P [0.5< x< 2]
P( x 3)
=

0.5
1
x
2 dx+
1
2
4x
6 dx

0
1
x
2 dx +
1
3
4x
6 dx
= 1
4 ( 10.25 )+ 1
6 ¿ ¿
=
0.1875+2.5
6
1
4 + 4
6
= 0.6591
b) As Xi’s are iid random variables
E(T) = E¿i)
= 81 * E ¿i) = 5
381=135
Var(T) = Var¿i)
= 812 * Var*Xi) = 812 * Var(x)
= 812*Var(Xi) = 812 * Var(x)
= 812 * 13/18
= 4738.56
As n = sample size = 81 > 70
So we use CLT
P(125 < T < 140) = P( 125135
4738.5 < T 135
4738.5 < 140135
4738.5 )
T 135
4738.5 =Z
¿ ф ( 0.073 )ф(0.145) N (0 , 1)
= 0.5291 – 0.4424
= 0.0867
chevron_up_icon
1 out of 8
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]