Random Variables With Joint Probability PDF 2022

Verified

Added on  2022/09/17

|5
|359
|24
AI Summary

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Let X, Y be continuous random variables with joint probability density function
f X , Y ( x , y ) = {α βα y ( α +1 ) e ( x y ) 0 <β< y< x<
0 Otherwise
With parameters α >2 and β >0.
a) Find the marginal pdf (probability density function) f Y ( y) of Y.
Solution
We compute the marginal pdf:
f Y ( y ) =


f ( x , y ) dx
¿
{
y

( α βα y (α+ 1 ) e( x y ) ) dx 0< y < x
0 Otherwise
b) Find the expressions for the mean and variance of Y
Solution
Mean M ( t )=E ( ety )=


ety f X , Y ( y ) dy
M ( t ) =
0

ety α βα y ( α +1 ) e(x y) dy
Variance μ= E (Y )=


y f Y ( y ) dy
μ=
0

βα y ( α +1 ) e(x y) dy
c)
i) Find the conditional pdf of X given Y = y, and hence find E( XY ).
Solution
f XY ( x|y ) = f XY (x , y)
f Y ( y )
¿ α βα y (α+1 ) e ( x y )
α βα y ( α+1 ) e y
E ( X |Y ) =


x f X Y ( x| y ) dx

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
¿ x α βα y ( α+ 1 ) e ( x y )
α βα y ( α +1 ) e y dx
¿ex xe x
ii) Hence calculate the expected value of X.
Solution
E [ X |Y = y ] = [ e x xe x ]2

¿ 3
e2 0.406
d) Find the joint moment generating function M(s, t) of (X, Y) for s<0 , t<0.
Solution
M ( s , t )=E ( est ) =
x1
x2
est f X ,Y ds(Ross, 2014)
¿
0

est α βα y ( α+1 ) e( x y ) ds
e) Determine the likelihood function L ( α , β|y )=
i=1
n
f Y ( yiα , β)
Solution
L ( α , β| y ) =
i=1
n
log f ( Xi θ)
¿
i=1
n
(¿ log α + log βαlog Γ +log y ( α +1 ) +log e ( x y ) )¿
¿ n log α + log βn log Γ n ( α + 1 ) log y ( x y ) log e
f) Show that ( T α ( y ) , T β ( y ) ) =
(
i=1
n
yi , y ( 1 ) ) is minimally sufficient for ( α , β ) .
Solution
For every set of nonnegative integers x1 , . xn, the joint probability mass function
f n ( X θ) of X1 Xn is as follows (Grace, 2017);
f n ( X |θ ) =
i=1
n eθ θxi
xi !
¿
i=1
n
yi , y(1)
Document Page
g) Assume that β is known:
i) Determine the score function of α given β.
Solution
From (e) above, we have;
L ( α , β|y )=n logα + log βn log Γ n ( α +1 ) log y ( x y ) log e
The score function will be a vector;
(
α ln L ( α , β| y ) ,
β ln L ( α , β | y ) )
ii) Show the maximum likelihood estimate of α given α = 1
1
n
i=1
n
ln yiln β
Solution

α ln L ( α , β |y ) =n ( d
ln α+ ln βα ln y d
ln e )=0(Garg, 2017)
Solving, we obtain;
α= 1
1
n
i=1
n
ln yiln β
iii) Find the observed information J ( α) and confirm that α is a maximum.
Solution
J ( α ) =
i=1
n
α 2λ (
i=1
n
α i1 )
¿
( 1
1
n
i=1
n
ln yiln β )
2
λ
( 1
1
n
i=1
n
ln yiln β )
Checking if α is maximum;
J
α =0
Hence α is maximum.
iv) Confirm that T α ( y ) can be expressed as a function of α .
Solution
T α ( y ) =n log α + log βn log Γn ( α +1 ) log y ( x y ) log e
Document Page
v) Show that Zi Gamma(1 ,α ) where Zi =ln ( Y i )ln(β ) for i=1 , . ,n.
Solution
P ( λ|Y ) P ( Y |λ ) P( λ)
λn eλ
y λ (α+ 1 ) α βα e ( xλ )
Hence, Zi Gamma(1 ,α )
h) The cumulative distribution function of Y is given by:
P ( Y y )=FY ( y ) =
{1( β
y )α
β< y<
0 Otherwise
With the maximum likelihood estimate ^β of β given by ^β= y(1).
i) Show that: P ( β b ) =F ^β ( b ) = {1 ( β
b )

0< β <b<
0 Otherwise
Solution
P ( β b ) =F ^β ( b ) =

b
¿ ¿
¿
{1( β
y )
0< β <b<
0 Otherwise
ii) Hence find the pdf of ^β.
Solution
f ( y ) =F ( y )'
¿ d
dy ( 1( β
y ) α
)
¿ α βα
yα+1
iii) Determine whether ^β is an unbiased estimate β.
Solution
E ( X ) =1
n
i=1
n
(1( β
y )α
)

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
¿ 1 ( β
y )
α
Thus, ^β is an unbiased estimate β.
iv) Show that ^β is a consistent estimator of β
Solution
^β=β + ( X T X )1
XT u
(lim
n
1
n X T X )1
lim
n
1
n X T u= ( SX T X )1 lim
n
1
n X T u
¿ 0
References
Garg, H., 2017. A new improved score function of an interval-valued Pythagorean fuzzy
set based TOPSIS method. International Journal for Uncertainty Quantification, 7(5).
Grace, Y.Y., 2017. Multi-State Models with Error-Prone Data. In Statistical Analysis
with Measurement Error or Misclassification (pp. 257-300). Springer, New York, NY.
Ross, S.M., 2014. Introduction to probability models. Academic press, Pp. 44-47.
1 out of 5
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]