ProductsLogo
LogoStudy Documents
LogoAI Grader
LogoAI Answer
LogoAI Code Checker
LogoPlagiarism Checker
LogoAI Paraphraser
LogoAI Quiz
LogoAI Detector
PricingBlogAbout Us
logo

Proof of relationship between xi, yi and x, y in linear regression

Verified

Added on  2023/06/04

|3
|533
|327
AI Summary
The given proof shows the relationship between xi, yi and x, y in linear regression. It also explains the concept of simple linear regression model.

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
2. Show that the following relationships holds

i=i
n
( xi x ) ( yi y )=
i=1
n
xi ( yi y ) …………………………. (xx)
Proof
Expand the right hand side of the equation (xx) as follows

i=1
n
( xi x ) ( yi y )=
i=1
n
xi ( yi y )
i=1
n
x ( yi y ) ……………… (i)
Consider the last term

i=1
n
x ( yi y ) =x
i =1
n
( yi y )

i=1
n
x ( yi y ) =x {
i=1
n
yi
i=1
n
y }

i=1
n
x ( yi y ) =x {
i=1
n
yin y } …………………………………………. (ii)
But,
y=

i=1
n
yi
n
, implying n y=
i=1
n
yi…………………………………………...... (iii)
Substitute (iii) in equation (ii) to obtain

i=1
n
x ( yi y ) =x {
i=1
n
yi
i=1
n
yi } = 0
Now equation (i) becomes

i=1
n
( xi x ) ( yi y )=
i=1
n
xi ( yi y ) . Hence proved
3. Show that the following relationships holds

i=1
n
yi =
i=1
n
^yi
Proof

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
We know that ei = yi ^yi
Taking summation on both sides

i=1
n
ei=
i=1
n
( yi ^yi )

i=1
n
ei=
i=1
n
yi
i=1
n
^yi ……………………………………………… (i)
But,
i=1
n
ei=¿ 0
Equation (i) becomes
0 ¿
i=1
n
yi
i=1
n
^yi
Then,
i=1
n
yi =
i=1
n
^yi. Hence proved.
4. Show that for the simple linear regression model, the point ( x , y) is always on the
regression line.
Proof
For simple linear regression yi= ^yi + ^ei and ^yi= ^b0 + ^b1 xi
But, y=

i=1
n
yi
n =

i=1
n
( ^yi + ^ei )
n
y=

i=1
n
( ^yi + ^ei )
n
y=

i=1
n
^yi
n

i=1
n
^ei
n
. ……………………………………….. (i)
Since,
i=1
n
^ei=0 equation (i) becomes
Document Page
y=

i=1
n
^yi
n
y=

i=1
n
( ^b0 + ^b1 xi )
n
y=

i=1
n
^b0
n +

i=1
n
^b1 xi
n
y= ^b0 + ^b1

i=1
n
xi
n
……………………………………… (ii)
Since, x=

i=1
n
xi
n
equation (ii) becomes
y= ^b0 + ^b1 x. Therefore, the regression line goes through point ( x , y).
1 out of 3
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]