This report covers the topic of Renewable Energy Conversion Systems submitted by XYZ under the supervision of Dr.XYZ. It covers topics like Photo voltaic, Wind Turbine, RES integration issues, Experiment on Photovoltaic, Experiment on Wind( DFIG), Computer aided design part and more.
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
Renewable Energy Conversion Systems: EAC4027-N Submitted report B.tech logo Submitted by XYZ (Student Id: XXXXXXXX) Under the Supervision of Dr.XYZ Department of Electrical Engineering College name December 2018
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
Table of Contents 1. Introduction......................................................................................................................................4 2. Renewable Energy Sources (RES).....................................................................................................4 2.1. Photo voltaic..............................................................................................................................5 2.2. Wind Turbine.............................................................................................................................7 3. RES integration issues.......................................................................................................................9 4. Experiment on Photovoltaic...........................................................................................................11 4.1. MPP Tracking without shading................................................................................................11 4.2. MPP Tracking with shading......................................................................................................12 4.3. Inverter Efficiency Factor.........................................................................................................14 5. Experiment on Wind( DFIG)............................................................................................................15 5.1. Influence of Mechanical speed on generator voltage..............................................................15 5.2. Influence of variable rotor frequency on stator frequency......................................................16 5.3. Influence of rotor current on stator voltage...........................................................................16 6. Computer aided design part...........................................................................................................16 7. References......................................................................................................................................26
List of Figures Figure 1 PV output at Victoria University Melbourne..........................................................................4 Figure 2 WT output at Victoria University Melbourne.........................................................................5 Figure 3 Standalone solar system.........................................................................................................7 Figure 4 Direct in line induction generator...........................................................................................8 Figure 5 Double fed induction generator.............................................................................................9 Figure 6 Typical 75 W PV module test condition................................................................................12 Figure 7 Shading condition.................................................................................................................13 Figure 8 Partially shaded output.........................................................................................................13 Figure 9 MPP without shading............................................................................................................14 Figure 10 DFIG control........................................................................................................................16 Figure 11 PVsyst desing......................................................................................................................17 Figure 12 PVsyst desing......................................................................................................................18 Figure 13 PVsyst solar data.................................................................................................................19 Figure 14 PVsyst tracking....................................................................................................................20 Figure 15 PVsyst Horizon line.............................................................................................................21 Figure 16 PV and inverter sizing.........................................................................................................22 Figure 17 PVsyst shading....................................................................................................................23 Figure 18 PVsyst PV and inverter sizing..............................................................................................24 Figure 19 Module...............................................................................................................................25 Figure 20 Simulation...........................................................................................................................26 Figure 21Output................................................................................................................................27
1.Introduction The increase in population and the pollution is the biggest issue that world is facing, the use of conventional fuels is the key problem of pollution around the world. Majority of countries ae moving to the non pollutant energy sources. The use of solar is on the top, while the use of wind is also increasing day by day. The sun is the main foundation of energy for the photovoltaic which converts heat energy into electricity. Wind is use to drive the rotor of the wind turbine which converts kinetic energy to electrical energy. Both the sources are subjected to uncertainties due to variation in atmospheric parameters. The actual output from PV and wind is dependent on the certain conditions, that is known as capacity factor. The capacity factor of WT is around 20-40% while in case of PV its around 12-15%. However it always dependent on the location, wind speed, solar irradiation and temperature of that particular location[2]. The solar power available during day time and peak during afternoon periods while the wind power is available most of the time specially during night due to high windvelocity[7].tIntpractice,tthisimpliestthetpossibilitytoftformingtathybrid tpowertsystemttotmediatetthetpowertimbalances,withtthetPVtcells tprovidingtelectricitytduringthetdaytandtwindtprovidingtelectricitytatnightin wintertandtsummertseasons. 2.Renewable Energy Sources (RES) In considerationtoftthetbehaviourtoftthetrenewabletenergytresources,tsolar and wind actually havetcomplementarytbehaviour.tHybridtsystemtwithtthetcombinationofPVandwind renewabletsourcestthereforetensurestthetenhancementtoftthetoverallsystemreliability, reductiontoftstoragetsizetrequirement,tandtcontributionttotlowertgenerationtcostt[9].t Figure1PV output at Victoria University Melbourne
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Figure2WT output at Victoria University Melbourne 2.1.Photo voltaic ConvertingtsolartenergytintotelectricaltenergytbytPVtinstallationstistthetmostrecognized way to usetsolartenergy.tSincetsolartphotovoltaictcellstaretsemiconductortdevices, they have a lot in common withtprocessingtandtproductionttechniquestoftother semiconductor devices such as computerstandtmemorytchips.tAstittistwelltknown,tthetrequirementstfortpurity and quality controltoftsemiconductortdevicestaretquitetlarge.tWithttoday'stproduction, which reached a largetscale,tthetwholetindustrytproductiontoftsolartcellsthastbeentdevelopedtand, due to low productiontcost,tittistmostlytlocatedtintthetFartEast.tPhotovoltaictcellstproducedbythe majoritytofttoday’stmostlargetproducerstaretmainlytmadetoftcrystallinetsilicon as semiconductortmaterial.tSolartphotovoltaictmodules,twhichtareta result of combination of photovoltaic cellsttotincreasettheirtpower,tarethighlytreliable,tdurabletandtlow noise devices totproducetelectricity.tThetfueltfortthetphotovoltaictcelltistfree.tThetsuntis the only resource that is requiredtfortthetoperationtoftPVtsystems,tandtitstenergytistalmosttinexhaustible. A typical photovoltaic cell efficiencytistaboutt15%,twhichtmeanstittcantconvert 1/6 of solar energy into electricity.tPhotovoltaictsystemstproducetnotnoise,ttheretaretno moving parts and they dotnottemittpollutantstintotthetenvironment.tTakingtintotaccounttthe energy consumed intheproductiontoftphotovoltaictcells,ttheytproducetseveralttenstofttimestlesscarbon dioxideper unittintrelationttotthetenergytproducedtfromtfossiltfuelttechnologies.tPhotovoltaic cell has lifetimeoftmoretthantthirtytyearstandtistonetoftthetmosttreliablesemiconductorproducts. Most solartcellstaretproducedtfromtsilicon,twhichtis non‐toxic and is foundtin abundance in thetearth's crust.The increase in population and the pollution is the biggest issue that world is facing, the use of conventional fuels is the key problem of pollution around the world. Majority of countries ae moving to the RES. The use of solar is on the top, while the use of wind is also increasing day by day. The sun is the main source of energy for the photovoltaic which converts heat energy into electricity. Wind is use to drive the rotor of the WT which converts kinetic energy to electrical energy. Both the sources are subjected to uncertainties duetovariationinatmosphericparameters.Theword„photovoltaic“ consiststofttwotwords:tphoto,tatgreekwordforlight,andvoltaic,which definestthetmeasurementtvaluetbytwhichtthetactivitytoftthe electric field is expressed, i.e. thetdifferencetoftpotentials.tPhotovoltaictsystemstusecellstoconverttsunlightinto electricity. Convertingtsolartenergytintotelectricitytintatphotovoltaictinstallationtis the most knownwayoftusingtsolartenergy.tThetlightthastatdualtcharactertaccordingtoquantum physics.tLighttistatparticletandtittistatwave.tThetparticlestoftlighttare called photons. Photons
aretmasslesstparticles,tmovingtattlighttspeed.tThetenergytoftthetphotondependsonits wavelengthtandtthetfrequency,tandtwetcantcalculatetit by the Einstein's law, which is: E=hv “E” is known as the photon energy “h” is called the planck’s constant=6.626 x10-34 v- photon frequency Part of thetphotontenergytistconsumedtfortthetelectrontgettingtfreetfrom the influence of the atomtwhichtittistattachedtto,tandtthetremainingtenergytistconverted into kinetic energy of a nowtfreetelectron.tFreetelectronstobtainedtbytthephotoelectriceffectarealsocalled photoelectrons.tThetenergytrequiredttotreleasetatvalencetelectrontfromtthe impact of an atom iscalledtat„worktout“tWi,tandtittdependstontthettypetoftmaterialtintwhichtthetphotoelectric effect hastoccurred.tThetequationtthattdescribestthistprocesstistastfollows: hv=Wi+Wkin Wkin- kinetic energy of emitted electrons Wi- workout hv- photon energy Functioning of photo voltaic cell η=Pel Psol =U.I E.A Pel- Electrical output power Psol- Radiation power U is the effective output voltage I stands for effective electricity output E stands for specific radiation power A is the Area of PV Energy conversiontefficiencytofta solar photovoltaic cell (η "ETA") is the percentage of energy fromthetincidenttlighttthattactuallytendstuptastelectricity.tThististcalculatedtattthetpointof maximum power,tPm,tdividedtbytthetinputtlighttirradiationt(E,tintW/m2), all under standard test conditions (STC) andtthetsurfacetoftphotovoltaictsolartcells (AC in m2).
η=Pm E×Ac Thetmosttcommontmaterialtfortthetproductiontoftsolartcellstistsilicon.tSiliconisobtained from sand and is one of the most common elementstintthetearth'stcrust,tsottheretistnotlimittto the availabilitytoftrawtmaterials. Monocrystalline polycrystalline, Bar‐crystalline silicon, thin‐film technology. Cells madetfromtcrystaltsilicont(Si),taretmadetoftatthinlytsliced piece (wafer), a crystal of silicon (monocrystalline)tortatwholetblocktoftsilicontcrystalst(multicrystalline);ttheir efficiencytrangestbetweent12% and 19%. Figure3Standalone solar system 2.2.Wind Turbine AccordingttotEWEAtestimation,t12%toftthetpowertdemandtoftthetwholeworldwillbe providedtbytwintgenerationtfortyeart2020.tAttpresent,tthettotaltinstallation capacity of wind powertgeneratorsthastreachedt31128tMWtandtthetgenerationtcosttpertkilowatt-hour has been reducedtfromt38tcentstint1982ttot4tcentstint2001.tThetwindtpowertgeneratorstcanbe installedtbytgridtconnectiontwithtthetelectricaltnetwork.tFortthetoffshoretislandstorremote areatwhichtcannottbetreachedtbytbulktpowertsystemtnetworks,tthetwindpowergenerators cantbetoperated-standalone ortintegratedtwithtdieseltgeneratorstandtphotovoltaic (PV) panels totservetthetpowertdemandtThetutilizationtoftwindtenergytmay be an attractive alternative in placestsuchtastoffshoretislands,twheretfueltistusuallytexpensivetandtwindtregimestare particularly favourable. The windtpowertistmainlytgeneratedtbytrotatingtthetbladetof wind turbinestviatthetairflowttotconverttthetwindtenergytintotelectricaltenergy.tThewindpower generationtcantbetassumedttotbetvariedtwithtthetwindtspeed.tDispersedtpowergeneration systemsaretexpectedtastimportanttelectrictpowertsupplytsystemstfortthetnextgeneration. Wind power generationtsystemt(WPGS)tistwidelytbeingtintroducedtintthetworldwide power utilities. ThetWPGStoutputtpowertfluctuatestduettotwindtspeed variations. Hence, if a large number oftwindtpowertgeneratorstaretconnectedttotthetgridtsystem,ttheir output can cause seriouspowertqualitytproblems,tthattis,tfrequencytandtvoltagetfluctuationstmaythappen.tIn order to solve thesetproblems,tthetsmoothingtcontroltoftwindtpowertgeneratortoutput is very important.tIntaddition,tSuperconductingtMagnettEnergytStoraget(SMES)tistsurelytonetoftthe tkeyttechnologiesttotovercometthese fluctuations.
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
Energy source - Solartradiationtdifferentiallytabsorbedtbytearthtsurfacetconverted through convectiveprocessesduettottemperaturetdifferencestairtmotion.tFundamentalEquationof Wind PowertWindtPower depends on: • Air (volume) • velocity of wind • Density of air, which is flowing through the surface of flux Energy definition: K.E=1 2mv2 Wherem=dm dt Fluid mechanics gives mass flow rate −dm dt=ρAV Sop=1 2ρAV3 WT usage the wind’s kinetic energy to produce electrical energy which can be utilized in residential and commercial purposes. Each wind turbinestcantbetusedttotgeneratetelectricity onasmallscalet–ttotpowertatsinglethome,tfortexample.tAtlargetnumbertofWTgrouped together, sometimesknowntastatwindtfarmtortwindtpark,tcantgeneratetelectricity on a muchlargerscale.tAtwindtturbinetworkstliketathigh-techtversiontoftantold- fashionedtwindmill. The wind blows on thetangledbladestoftthetrotor,tcausingtitttot spin,tconverting some of the wind’s kinetictenergyintotmechanicaltenergy.tSensorst intthetturbinetdetecthowstronglythewindtistblowingtandtfromtwhich tdirection.tThetrotortautomaticallytturnsttotfacetthewind,andautomaticallytbrakestin tdangerouslythightwindsttotprotecttthetturbinefromdamage.Ashaftand tgearboxtconnecttthetrotorttotatgeneratort(1),tsotwhentthetrotortspins, so does the generator. Thetgeneratortusestantelectromagnetictfieldttotconverttthistmechanical energy into electrical energy.tThetelectricaltenergytfromtthetgeneratortisttransmittedtalongtcablesto a substation (2).Here,thetelectricaltenergytgeneratedtbytalltthetturbinestintthetwindtfarmiscombined and converted to athightvoltage.tThetnationaltgridtusesthightvoltagesttottransmittelectricity efficientlytthroughtthetpowertlinest(3)ttotthethomestandtbusinessestthatneedit(4).Here, otherttransformerstreducetthetvoltagetback down to a usable level. Figure4Direct in line induction generator
Recenttdevelopmentstseekttotavoidtmosttdisadvantagestoftdirect-in-lineconverterbased ASGs.Fig.4tshowstantalternativetASGtconcepttthattconsiststoftatdoublytfedtinduction generator(DFIG)twithtatfour-quadranttac-to-acconverterbasedtontinsulatedgatebipolar transistors (IGBTs)tconnectedttotthetrotor windings. Comparedttotdirect-in-line systems, this DFIGtofferstthetfollowing advantages: Reducedinvertertcost,tbecausetinvertertratingtisttypicallyt25%oftotalsystem power, while thetspeedtrangetoftthetASGtist33% around thetsynchronous speed. Reduced cost oftthetinvertertfilterstandtEMItfilters,tbecuase filters are rated for 0.25 p.u.ttotaltsystemtpower,tandtinvertertharmonicstrepresentta smaller fraction of total system harmonics. Improvedtsystemtefficiency, IGBTtinverters.tApproximatelyt2-3%tefficiencytimprovement can be obtained. Power-factorcontroltcantbetimplementedtattlowertcost,tbecausetheDFIGsystem (four-quadranttconvertertandtinductiontmachine)tbasicallytoperatestsimilartoa synchronous generator. Thetconverterthasttotprovidetonlytexcitation energy Figure5Double fed induction generator 3.RES integration issues Theuncertaintytandtvariabilitytoftwindtandtsolartgenerationtcanposechallengesforgrid operators.tVariabilitytintgenerationtsourcestcantrequiretadditionaltactionsttobalancethe system[3].Greatertflexibilitytintthesystemmaytbeneededtoaccommodatesupply- sidetvariabilitytandtherelationshipttogenerationtlevelsandtloads.Sometimestwind generationtwillincreasetasloadincreases,tbutincasestinwhichrenewablegeneration increasestwhentloadtlevelstfallt(ortvicetversa),tadditionaltactionstto balance the system are needed.tSystemtoperatorstneedttotensuretthattthey havetsufficienttresources to accommodate significantupordowntrampstintwindtgenerationttotmaintaintsystembalance.Another challengetoccurstwhentwindtortsolartgenerationtis available duringtlow load levels;tin some cases,tconventionaltgeneratorstmaytneedtto turn downttottheir minimum generation levels. Figuretprovidestantexampletoftthetflexibilitytneededtforta high penetration of wind energy. Utilizingtalltoftthetwindtenergytwould require conventional generators to meet the nettload, whichtistdefinedtastthetdemandtminustthetwindtenergy[4].tThetgraphtshowstthe load and net loadtfortatsampletweek.tTheretaretperiodstwhentthetnettloadchanges,orramps,more
quicklythantthetloadtalone.tAlso,tthetremainingtgeneratorsmustbeoperatedata lowtoutputtlevel (sometimestcalledt“turndown”)tattnighttwhenttheretistatlottof wind power. In contrastttotwind, solar generation is often more coincidenttwithtload.tHowever, in regions with eveningtloadtpeaks,tlosstoftsolartgenerationtattsunsettcantexacerbatetramping needs to meet the evening demand. Some of the event analysis in theWestern Wind and Solar Integration Study Phase 2(WWSIS-2),has proved that RES integration upto 33 % the off periods such as (sunrise and sunset) are dominate the ramping requirements[5]. Because it is possible to plan for thistaspecttoftsolartpowertvariability,tincreasedtoperatingtreserve levels need to focus onlytontthetunpredictabletcloudtvariability,twhichtis reduced by aggregation of geographicallytdiversetsolartpowertplantst(astwelltastaggregationtwithtwindandload variability).tAstatresult,tWWSIS-2tfoundtthattoperatingtreserveswerelowerforthehigh solar scenariot(25%tsolar)tthantthe high wind scenario (25%twind) (Lew 2013)[6]. Solartpowertthatisconnectedttotthetdistributiontsystemthastsimilarimpactsasthat connectedttotthetbulktpowertsystem;thowever,ttheretaretdifferences.Transmission-level solarpowertplantstprovidetreal-timetgenerationtdatattotpowertsystemtoperators;whereas distributedtsolartpowertplantstdotnot.tThattmakestittdifficult for atsystemtoperator to know whethertantincreasetintnettloadtistbecausetoftincreasingtdemandtordecreasingsolar generation.tAnothertdifferencetistthetwaytthetsolartgenerationtreactsttotfaultstorvoltage excursions.tTransmission-leveltsolartpowertcantbetdesignedttomaintainsynchronization duringtfaultstoftlimitedtduration.tHowever,tcurrenttstandardst(InstituteofElectricaland ElectronicstEngineerst1547)trequiretdistribution-leveltsolarttotquicklytdisconnectduring thesetevents.tThetresulttistthattittmaytbetmoretdifficultttotavoidtor recover from some system disturbances. A varietytoftoptionstaretavailablettotaddresstintegrationtchallenges. Key considerations in selecting methodsttotaddresstthetvariabilitytandtuncertaintytoftthe renewable generation are thetcost-effectivenesstoftthetmethodtandtthetcharacteristicstoftthe existing grid system. Gridinfrastructure,toperationaltpractices,tthetgenerationtfleet,tandregulatorystructureall impactthetypestoftsolutionstthattaretmostteconomictandtviable.tGenerally,tsystemsneed additionalflexibilitytobeablettotaccommodatetthetadditionaltvariabilitytoftrenewables. Flexibilitycanbeachievedtthroughtinstitutionaltchanges,toperationaltpractices,tstorage, demand-sideflexibility,flexiblegenerators,tandtothertmechanisms.tSeveraltofttheseare discussedbelow,with antemphasistonttheirtbenefits,twherettheythavetbeentimplemented,tandeffectivenessin addressingintegrationtchallenges.tManythavetbeentadoptedtbecausettheyreducepower systemtcoststindependenttoftvariable renewable generation. Windandtsolartpowertforecastingtcanthelptreducetthetuncertaintytofvariablerenewable generation. Thetusetoftforecaststhelpstgridtoperatorstmoretefficiently commit or de-commit generators to accommodatetchangestintwindtandtsolartgenerationtand prepare for extreme eventstintwhichtrenewabletgenerationtistunusuallythightortlow.tForecaststcanhelpreduce theamounttoftoperatingtreservestneededtfortthetsystem,treducingtcoststofbalancingthe system.CaliforniatIndependenttSystemtOperatort(CAISO)twastthetfirstttoimplement forecastingin2004,tandttodaytittistwelltestablishedtandtusedtintalltindependenttsystem operators (ISOs). In thetWesterntUnitedtStates,tapproximatelytatdozentbalancing authority areas, which encompass 80% oftwindtcapacity,tusetforecasting (WGA 2012). Improvementsthavetbeentmadetintrecenttyearsttowardtreducingtmean average forecast errors. Fortexample,tXceltEnergytreducedtitstmeantaverageterrorstfromt15.7%ttot12.2%between
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
2009 and 2010,tresultingtintatsavingstoft$2.5tmilliont(WGAt2012). Today, forecast errors typically rangetfromt3%ttot6%toftratedtcapacitytonethourtaheadtand 6% to 8% a day ahead onatregionaltbasist(astopposedttotfortatsingletplant).tIntcomparison,terrorsforforecasting load typicallytrangetfromt1%ttot3%tday-aheadt(Lewtettal.t2011). Day ahead forecast is key part for the scheduling of the solar and wind to make unit commitment and the efficiency with cost for the demandtresponse,tortothertmitigatingtoptiontand thus drive reliability. Solartforecastingtistemerging,talthoughtnottwidelytused today. Clouds are the primary causeoftvariabilitytfortsolartgeneration,tasidetfromtthetpredictabletchangestduringthe courseofthetdaytandtthroughouttthetyear.tThetabilityttotaccuratelytforecasttsolarpower depends on the charactertoftcloudtcover,tincludingtthetamounttoftwatertorticetin clouds and aerosols[7].Topredict impactstduringtthetnexttfewthours,tsatellitetimagestcantbetusedttotassessthedirectionand speedtoftapproachingtclouds.tFortlongertperiods,tweathertmodelstcantbe used to determine howtcloudstmaytformtand change (WGA, 2012). Reservetmanagementtpracticestcantbetmodifiedttothelptaddresstthetvariability of wind andsolartpower.tPracticestthattreducetoveralltreservetrequirementstcantleadtosubstantial cost savings.tPotentialttoolstfortmanagingtvariabilitytincludetplacingtlimitston wind energy ramps totreducetthetneedtfortreservestandtenabletvariabletrenewablesttotprovide reserves or othertancillary services. Limitingtuptrampstistanothertpotentialttooltfortmanagingtvariability.tBecause reserve levels aretsetttotaddresstrelativelytlow-probability,tlargetchangestinwindoutput,modestlimits ontwindtgenerationtcantsignificantlytreducetthetneedtfortbalancingtreserves,yieldingcost savings.Rampteventstthattaffecttplantstacrosstatbalancingtauthoritytareatresultfromlarge- scaleweatherteventstthattcantbetmoreteasilytpredictedtthantlocaltweathertevents.By imposingtrampingtlimitstontwindtgeneratorstwhentlarge-scaletweathertevents are forecasted, balancingreservetrequirementstmaytbetsignificantlytreduced.tRamptratecontrolsarea relativelytlow-costttooltfortminimizingtsystemtimpacts;tthetprimarytcoststare associated with the curtailedtgenerationtandtthetcommunicationstandtcontroltequipment.tRamp rate controls on renewabletgeneratorsthavetbeentimplementedtintthetElectrictReliabilitytCouncil of Texas (ERCOT),tIreland,tGermany,tandtHawaii (WGA 2012). Another optiontisttotdesigntincentivestsotthattwindtandtsolartpower plants can provide regulation,tinertia,tortothertancillarytservicestiftittisteconomicalttotdotso.Windandsolar plantsareespeciallygoodtattprovidingtdowntreservestattverytlowtcost.tTheprovisionof ancillary services uptreservestfromtwindtortsolartpowertplantstwilltnecessarilytreduce energy production—asitdoesfortconventionaltplantstthattprovidetthosetservices—butincentives suchasthetproductionttaxtcredittdoestnottrecognizetthetpotentialvalueofwind-provided ancillary services 4.Experiment on Photovoltaic 4.1.MPP Tracking without shading Maximum Power Point Tracking,tfrequentlytreferredttotastMPPT,tistan electronic system that operatestthetPhotovoltaict(PV)tmodulestintatmannertthattallowstthetmodules to produce all thetpowerttheytaretcapabletof.tMPPTtistnottatmechanicalttracking system that “physically moves”thetmodulesttotmaketthemtpointtmoretdirectlytattthetsun.tMPPTisacompletely electronic system that contrasts the electrical working point of the units so that the modules are able to deliver maximumtavailabletpower. Additionalpowertharvestedtfromtthetmodulestistthentmadetavailabletasincreasedbattery charge current.tMPPTtcantbetusedtintconjunctiontwithtatmechanicalttracking system, but the
two systemstaretcompletelytdifferent.tTotunderstandthowtMPPTtworks, let’s first consider theoperationtoftatconventionalt(non-MPPT)tchargetcontroller[8].Whenaconventional controllerischargingtatdischargedtbattery,tittsimplytconnectstthetmodulestdirectlytothe battery.tThistforcestthetmodulesttotoperatetatbatterytvoltage,ttypicallynotthe idealtoperating voltage at which thetmodulestaretablettotproducettheirtmaximumtavailable power.ThePVtModulePower/Voltage/Currentchartdemonstrationstheold-style Current/Voltagecurve fortattypicalt75Wtmoduletattstandardttesttconditionstoft25°Ctcellttemperatureand 1000W/m2toftinsolation.tThistgraphtalsotshowstPVtmoduletpowertdeliveredtvsmodule voltage. Fortthetexampletshown,tthetconventionaltcontrollertsimplytconnects the module to thetbatterytandtthereforetforcestthetmodulettotoperatetatt12V.tBy forcing the 75W module to operatetatt12Vtthetconventionaltcontrollertartificiallytlimitstpowertproductionto53W. Ratherthantsimplytconnectingtthetmodulettotthetbattery,tthetpatentedtMPPTsystemin aSolarBoost™chargetcontrollertcalculatestthetvoltagetattwhichtthetmoduletisableto producemaximumtpower[9].tIntthistexampletthetmaximumtpowertvoltagetoftthemodule (VMP) is 17V.tThetMPPTtsystemtthentoperatestthetmodulestatt17Vttotextracttthe full 75W, regardless oftpresenttbatterytvoltage.tAthightefficiencytDC-to-DCtpowertconverter converts the17Vmoduletvoltagetattthetcontrollertinputttotbatterytvoltagetattthetoutput.tIftthetwhole systemwiringtandtalltwast100%tefficient,tbatterytchargetcurrenttintthistexampletwouldtbe VMODULEt¸ VBATTERY x IMODULE, or 17V ¸ 12Vtxt4.45At=t6.30A.t A charge currenttincreasetoft1.85Atort42%twouldtbetachievedtbytharvestingtmodule power thattwouldthavetbeentlefttbehindtbytatconventionaltcontrollertandtturningitintouseable chargetcurrent.tBut,tnothingtist100%tefficienttandtactualtchargetcurrentincreasewillbe somewhattlowertastsometpowertistlosttintwiring,tfuses,tcircuittbreakers, and in the Solar Figure6Typical 75 W PV module test condition Actualchargetcurrentincreasetvarieswithtoperatingconditions.tAs shownabove, the greaterthedifferencetbetweentPVtmoduletmaximumtpowertvoltagetVMPandbattery voltage,thegreatertthetchargetcurrenttincreasetwilltbe[10].tCoolertPVtmodulecell temperatures tend to producethighertVMPtandtthereforetgreatertchargetcurrenttincrease. tThistis because VMP and availabletpowertincreasetastmoduletcellttemperaturedecreases tastshowntin the PV Module TemperaturetPerformancetgraph.tModulestwithtat25°Ct VMPtratingthighertthant17V will alsottendttotproducetmoretchargetcurrenttincrease tbecausetthetdifferencebetweenactualVMPtandtbatterytvoltagetwilltbetgreater.tAt highlytdischargedtbatterytwillalsoincreasechargecurrentsincetbatterytvoltageis tlower,tandtoutputttotthebatteryduringMPPTcouldbethoughttoftastbeing “constant power”.
4.2.MPP Tracking with shading The shading is the key obstacle in the solar power generation facility which could not be avoidedcompletely,byttrees,tchimneys,tsatellitetdishestandtmore.tIntthesetsystemstpartial shading losses are estimatedttotresulttinta 5%-25% annual energy loss. Impact of shading on MPP Shading of anytparttoftPVtarraytwilltreducetitstoutput.tClearly,tthetoutput of any shaded cell or moduletwilltbetloweredtintcorrelationtwithtthetreductiontintlighttfalling on it. However in systems withttraditionaltstringtinverters,tunshadedtcellstortmodulestmay also be affected by thetshade.tFortexample,tiftatsingletmoduletintatserieststringtistpartiallytshaded,titscurrent output will betreducedtandtthistmaytdictatetthetoperatingtpointtof all the modules in the string.Alternately,theshadedtmoduletmaytbetbypassed,tleadingtthistmodulettotstop producing powertentirelyt(Fig.t7).tIftseveraltmodulestaretshaded,tthetstringtvoltage may be reduced to atvaluetlowertthantthetinverter’stminimumtoperatingtpoint,tcausing that string to produce no power. Figure7Shading condition The low voltage tracking is the key parameter to harvest the energy in efficientway for the completely or partially shaded PV modules[11]. However,microinverterstneedtrelativelythightvoltages,toftabout20V,totbeableto tracktatmodule’stMPP.tThistmeanstthattiftatmodule’stvoltagetdropstbelowthispoint,the microinvertertwilltnotttracktitstMPP,trathertittwouldtmaintaintatvoltagethigh enough for it to continuettotoperate,tbuttattantun-optimizedtpoint.tIntcontrast,tthetSolarEdgepower optimizers startttrackingtMPPtfromtatvoltagetastlowtast5V,tmeaningtthey track a module’s MPP even undertseveretpartialtshading[12]
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
Figure8Partially shaded output Table1Shading test of PV 4.3.Inverter Efficiency Factor By efficiency, we are reallytsaying,twhattpercentagetoftthetpowertthattgoes into the inverter comestouttastusabletACtcurrentt(nothingtistevert100%tefficient,tthere will always be some lossestintthetsystem).tThistefficiencytfiguretwilltvarytaccordingttothowtmuchpoweris utilizedwhentheefficiencyismuchhigheratthetimeofproductionofenergy fromtsomethingtjusttovert50%twhentattrickletoftpowertis being used, to something over 90% whentthetoutputtistapproachingtthetinverterstratedoutput.Aninverterwill usetsometpowertfromtyourtbatteriesteventwhentyoutaretnot drawing any AC powertfrom it. This results intthetlowtefficienciestat low power levels[13]. Figure9MPP without shading A 3kW inverter may characteristically attraction about 20 watts after your batteries at the time where there is not Alternating current power is available. A small 200W inverter may on
the other hand only draw 25 watts from the battery to give an AC-output of 20 watts, subsequent intantefficiency of 80%[14]. Bigger inverters willtgenerallythavetatfacilitytthattcouldtbetnamed a "Sleep Mode" to increase overalltefficiency.tThistinvolvestatsensortwithintthetinvertertsensingtiftAC power is required.Iftnot,tittwillteffectivelytswitchtthetinvertertoff,tcontinuingttosenseifpoweris required.Thiscantusuallytbetadjustedttotensuretthattsimplytswitchingtatsmalltlightonis sufficient to "turn thetinverterton".tThistdoestoftcoursetmeantthattappliancestcannottbetlefttin "stand-by"mode,and ittmaytbetfoundtthattsometappliancestwithttimerst(e.g.twashingtmachine)treachapointin their cycletwherettheytdotnottdrawtenoughtpowerttotkeeptthetinvertert"switched on", unless somethingelse,e.g.tatlight,tistontattthetsamettime.tAnothertimportanttfactorinvolvesthe wave formtandtinductivetloadst(i.e.tantappliancetwheretantelectricaltcoiltis involved, which willincludetanythingtwithtatmotor).tAnytwaveformtthattistnottattruetsinetwave(i.e.isa square, ortmodifiedtsquaretwave)twilltbetlesstefficienttwhentpoweringtinductive loads - the appliance maytuset20%tmoretpowertthantittwouldtiftusingtatpuretsine wave. Together with reducing efficiency,tthistextratpowertusagetmaytdamage,tortshortentthetlife of the appliance, duettotoverheating. Efficiency of inverter is defined as the how much power from DC is converted into the AC power losttastheat,tandtalsotsometstand-bytpowertistconsumedtfor keeping the inverter in poweredtmode.tThetgeneraltefficiency formula is η=PAC PDC wheretPACtistACtpowertoutputtintwattstandtPDCtistDCtpowertinputtintwatts.Highquality sinewavetinverterstaretratedtatt90-95%tefficiency.tLowertqualitytmodifiedtsinewave inverters are lesstefficientt-t75-85%.tHightfrequencytinverterstaretusuallytmore efficient than low-frequency.tInvertertefficiencytdepends on inverter load. 5.Experiment on Wind( DFIG) Doubly-fedelectricmachinesaretbasicallytelectrictmachinestthattaretfedtaccurrentsinto both thetstatortandtthetrotortwindings.tMosttdoubly-fedtelectric machines in industry today arethree-phasetwound-rotortinductiontmachines[15].tAlthoughttheirtprinciplestoftoperation have been knowntfortdecades,tdoubly-fedtelectrictmachinesthavetonlytrecently entered into commonuse.tThististduetalmosttexclusivelyttotthetadventtoftwindtpowertechnologiesfor electricity generation.tAs the frequency of rotor varies the stator frequency also changes, two factor are important for stator frequency one is the mechanical speed of rotor and second is rotor frequency. Mechanical speed can be controlled by gear box arrangement still perfect control is not possible while the rotor frequency can be controllable from the converter stage. Anychangeinrotorfrequencywillleadstochangeinstatorfrequency.Doubly- fedtinductiontgeneratorst(DFIGs)taretbytfartthemostwidelyusedtypeofdoubly-fed electrictmachine,tandtaretonetoftthemostcommontypesofgeneratorused totproducetelectricitytintwindtturbines[16].tDoubly-fedtinductiontgeneratorsthaveanumber ofadvantagestovertotherttypestoftgeneratorstwhentusedtinwindturbines.Theprimary
advantage oftdoubly-fedtinductiontgeneratorstwhentused in wind turbines is thattthey allow the amplitudetandtfrequencytofttheirtoutputtvoltagesttotbetmaintainedtat a constant value, no matter the speedtoftthetwindtblowingtontthetwindtturbinetrotor.tBecausetof this, doubly-fed inductiongeneratorscantbetdirectlytconnectedttotthetactpowertnetworktandremain synchronized at allttimestwithtthetactpowertnetwork.tOthertadvantagestincludetthe ability to controlthepowertfactort(e.g.,ttotmaintaintthetpowertfactortattunity),twhilekeepingthe power electronics devicestintthetwindtturbinetattatmoderatetsize[17].tThistmanualtcovers the operation of doubly-fedtinductiontgenerators,tastwelltasttheir use in wind turbines. It also coverstheoperationoftthree-phasetwound-rotortinductiontmachinestusedtastthree-phase synchronous machines and doubly-fedtinductiontmotors.tAlthoughtittistpossible to use these machinesbythemselves,ttheytaretprimarilytstudiedtastatsteppingtstonettodoubly-fed induction generators. 5.1.Influence of Mechanical speed on generator voltage In other words, thetfrequencytfstatoroftthetactvoltagestproducedtattthe stator of a doubly-fed induction generator istproportionalttotthetspeedtη∅frotortoftthetrotatingtmagnetic field at the stator.tThetspeedtη∅fstatortoftthetstatortrotatingtmagnetictfieldtitselfdependsontherotor speedηrotor(resulting from the mechanical powertattthetrotortshaft)tand the frequencyfrotor oftthetactcurrentstfedtinto the machine rotor[18].The rotor current of DFIG is controllable by the dual stage converter stage, still any change in rotor current affect the stator voltage as the current in the rotor winding changes the flux of rotor and the induced voltage on stator terminal also get affected. To smoothly control the stator voltage of the DFIG the rotor fed control from converter must be implemented. Iftherotoroftatdoubly-fedtinductiontgeneratortrotatestintthetoppositedirectiontothe magnetic fieldtcreatedtintthetrotor,tthetamplitudetandtfrequencytoftthe voltages produced by the generatortwilltbetlower than during normal singly-fed operation (at the same rotor speed) [19, 20]. Usingdoubly-fedtinductiontgeneratorstintwindtturbinestinsteadtoftasynchronousgenerators offers thetfollowingtadvantages:t1)tOperationtattvariabletrotortspeedtwhiletthe amplitude and frequencyoftthetgeneratedtvoltagestremaintconstant,t2)tOptimizationtoftthetamounttof power generated as atfunctiontoftthetwindtavailabletupttotthetnominaltoutputtpower of the windturbinegenerator,t3)tVirtualteliminationtoftsuddentvariationstintthetrotorttorqueand generator output power, 4) Generation of electrical power at lower wind speeds, and 5) Control of the power factor (e.g., in order to maintain the power factor at unity).
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Figure10DFIG control 5.2.Influence of variable rotor frequency on stator frequency As the frequency of rotor varies the stator frequency also changes, two factor are important for stator frequency one is the mechanical speed of rotor and second is rotor frequency. Mechanical speed can be controlled by gear box arrangement still perfect control is not possible while the rotor frequency can be controllable from the converter stage. Any change in rotor frequency will leads to change in stator frequency. 5.3.Influence of rotor current on stator voltage The rotor current of DFIG is controllable by the dual stage converter stage, still any change in rotor current affect the stator voltage as the current in the rotor winding changes the flux of rotor and the induced voltage on stator terminal also get affected. To smoothly control the stator voltage of the DFIG the rotor fed control from converter must be implemented. 6.Computer aided design part
Figure11PVsyst desing Figure12PVsyst desing
Figure13PVsyst solar data
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
7.References [1]G. Boyle, "Renewable energy,"Renewable Energy, by Edited by Godfrey Boyle, pp. 456.OxfordUniversityPress,May2004.ISBN-10:0199261784.ISBN-13: 9780199261789,p. 456, 2004. [2]O. Hafez and K. Bhattacharya, "Optimal planning and design of a renewable energy based supply system for microgrids,"Renewable Energy,vol. 45, pp. 7-15, 2012. [3]E. J. Coster, J. M. Myrzik, B. Kruimer, and W. L. Kling, "Integration issues of distributed generation in distribution grids,"Proceedings of the IEEE,vol. 99, no. 1, pp. 28-39, 2011. [4]A. S. Anees, "Grid integration of renewable energy sources: Challenges, issues and possible solutions," inPower Electronics (IICPE), 2012 IEEE 5th India International Conference on, 2012, pp. 1-6: IEEE. [5]L. Saw, Y. Ye, and A. Tay, "Electro-thermal analysis and integration issues of lithium ion battery for electric vehicles,"Applied energy,vol. 131, pp. 97-107, 2014. [6]P. Siano, "Assessing the impact of incentive regulation for innovation on RES integration,"IEEE Transactions on Power Systems,vol. 29, no. 5, pp. 2499-2508, 2014. [7]H. H. Fong, "Integration of herbal medicine into modern medical practices: issues and prospects,"Integrative cancer therapies,vol. 1, no. 3, pp. 287-293, 2002. [8]T. Esram and P. L. Chapman, "Comparison of photovoltaic array maximum power point tracking techniques,"IEEE Transactions on energy conversion,vol. 22, no. 2, pp. 439-449, 2007. [9]W. Xiao, N. Ozog, and W. G. Dunford, "Topology study of photovoltaic interface for maximum power point tracking,"IEEE transactions on Industrial Electronics,vol. 54, no. 3, pp. 1696-1704, 2007. [10]K. Kobayashi, I. Takano, and Y. Sawada, "A study on a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions," inPower Engineering Society General Meeting, 2003, IEEE, 2003, vol. 4, pp. 2612-2617: IEEE. [11]C. R. Sullivan and M. J. Powers, "A high-efficiency maximum power point tracker for photovoltaic arrays in a solar-powered race vehicle," inPower Electronics Specialists Conference, 1993. PESC'93 Record., 24th Annual IEEE, 1993, pp. 574- 580: IEEE. [12]S.SilvestreandA.Chouder,"Effectsofshadowingonphotovoltaicmodule performance,"Progress in Photovoltaics: Research and applications,vol. 16, no. 2, pp. 141-149, 2008. [13]G. Notton, V. Lazarov, and L. Stoyanov, "Optimal sizing of a grid-connected PV system for various PV module technologies and inclinations, inverter efficiency characteristics and locations,"Renewable Energy,vol. 35, no. 2, pp. 541-554, 2010. [14]G. K. Andersen, C. Klumpner, S. B. Kjaer, and F. Blaabjerg, "A new green power inverter for fuel cells," inPower Electronics Specialists Conference, 2002. pesc 02. 2002 IEEE 33rd Annual, 2002, vol. 2, pp. 727-733: IEEE. [15]M. Kayikci and J. V. Milanovic, "Reactive power control strategies for DFIG-based plants,"IEEE transactions on energy conversion,vol. 22, no. 2, pp. 389-396, 2007. [16]F. M. Hughes, O. Anaya-Lara, N. Jenkins, and G. Strbac, "A power system stabilizer for DFIG-based wind generation,"IEEE Transactions on Power Systems,vol. 21, no. 2, pp. 763-772, 2006.
[17]Y. Zhou, P. Bauer, J. A. Ferreira, and J. Pierik, "Operation of grid-connected DFIG under unbalanced grid voltage condition,"IEEE Transactions on Energy Conversion, vol. 24, no. 1, pp. 240-246, 2009. [18]J. Ekanayake, L. Holdsworth, and N. Jenkins, "Comparison of 5th order and 3rd order machine models for doubly fed induction generator (DFIG) wind turbines,"Electric Power Systems Research,vol. 67, no. 3, pp. 207-215, 2003. [19]L. Xu and P. Cartwright, "Direct active and reactive power control of DFIG for wind energy generation,"IEEE Transactions on energy conversion,vol. 21, no. 3, pp. 750- 758, 2006. [20]S. Xiao, G. Yang, H. Zhou, and H. Geng, "An LVRT control strategy based on flux linkagetrackingforDFIG-basedWECS,"IEEETransactionsonIndustrial Electronics,vol. 60, no. 7, pp. 2820-2832, 2013.