logo

Renewable Energy Conversion Systems: EAC4027-N

   

Added on  2023-05-28

33 Pages5567 Words127 Views
Renewable Energy Conversion Systems:
EAC4027-N
Submitted report
B.tech
logo
Submitted by
XYZ
(Student Id: XXXXXXXX)
Under the Supervision of
Dr.XYZ
Department of Electrical Engineering
College name
December 2018

Table of Contents
1. Introduction......................................................................................................................................4
2. Renewable Energy Sources (RES).....................................................................................................4
2.1. Photo voltaic..............................................................................................................................5
2.2. Wind Turbine.............................................................................................................................7
3. RES integration issues.......................................................................................................................9
4. Experiment on Photovoltaic...........................................................................................................11
4.1. MPP Tracking without shading................................................................................................11
4.2. MPP Tracking with shading......................................................................................................12
4.3. Inverter Efficiency Factor.........................................................................................................14
5. Experiment on Wind( DFIG)............................................................................................................15
5.1. Influence of Mechanical speed on generator voltage..............................................................15
5.2. Influence of variable rotor frequency on stator frequency......................................................16
5.3. Influence of rotor current on stator voltage...........................................................................16
6. Computer aided design part...........................................................................................................16
7. References......................................................................................................................................26

List of Figures
Figure 1 PV output at Victoria University Melbourne..........................................................................4
Figure 2 WT output at Victoria University Melbourne.........................................................................5
Figure 3 Standalone solar system.........................................................................................................7
Figure 4 Direct in line induction generator...........................................................................................8
Figure 5 Double fed induction generator.............................................................................................9
Figure 6 Typical 75 W PV module test condition................................................................................12
Figure 7 Shading condition.................................................................................................................13
Figure 8 Partially shaded output.........................................................................................................13
Figure 9 MPP without shading............................................................................................................14
Figure 10 DFIG control........................................................................................................................16
Figure 11 PVsyst desing......................................................................................................................17
Figure 12 PVsyst desing......................................................................................................................18
Figure 13 PVsyst solar data.................................................................................................................19
Figure 14 PVsyst tracking....................................................................................................................20
Figure 15 PVsyst Horizon line.............................................................................................................21
Figure 16 PV and inverter sizing.........................................................................................................22
Figure 17 PVsyst shading....................................................................................................................23
Figure 18 PVsyst PV and inverter sizing..............................................................................................24
Figure 19 Module...............................................................................................................................25
Figure 20 Simulation...........................................................................................................................26
Figure 21 Output................................................................................................................................27

1. Introduction
The increase in population and the pollution is the biggest issue that world is facing, the use
of conventional fuels is the key problem of pollution around the world. Majority of countries
ae moving to the non pollutant energy sources. The use of solar is on the top, while the use of
wind is also increasing day by day. The sun is the main foundation of energy for the
photovoltaic which converts heat energy into electricity. Wind is use to drive the rotor of the
wind turbine which converts kinetic energy to electrical energy. Both the sources are
subjected to uncertainties due to variation in atmospheric parameters. The actual output from
PV and wind is dependent on the certain conditions, that is known as capacity factor. The
capacity factor of WT is around 20-40% while in case of PV its around 12-15%. However it
always dependent on the location, wind speed, solar irradiation and temperature of that
particular location [2]. The solar power available during day time and peak during afternoon
periods while the wind power is available most of the time specially during night due to high
wind velocity [7]. tIntpractice,tthis impliest thet possibility toftforming tathybrid
tpowertsystemt totmediatetthetpowertimbalances, withtthet PVtcells
tprovidingtelectricitytduring the tday tand twindtprovidingt electricitytat night in
wintertandtsummertseasons.
2. Renewable Energy Sources (RES)
In considerationtoftthetbehaviourtoftthetrenewabletenergytresources,tsolar and wind actually
havetcomplementarytbehaviour.tHybridtsystemtwithtthetcombination of PV and wind
renewabletsourcestthereforetensurestthetenhancementtoftthetoverall system reliability,
reductiontoftstoragetsizetrequirement,tandtcontributionttotlowertgenerationtcostt[9].t
Figure 1 PV output at Victoria University Melbourne

Figure 2 WT output at Victoria University Melbourne
2.1. Photo voltaic
ConvertingtsolartenergytintotelectricaltenergytbytPVtinstallationstistthetmost recognized
way to usetsolartenergy.tSincetsolartphotovoltaictcellstaretsemiconductortdevices, they have
a lot
in common withtprocessingtandtproductionttechniquestoftother semiconductor devices such
as computerstandtmemorytchips.tAstittistwelltknown,tthetrequirementstfortpurity and quality
controltoftsemiconductortdevicestaretquitetlarge.tWithttoday'stproduction, which reached a
largetscale,tthetwholetindustrytproductiontoftsolartcellsthastbeentdevelopedtand, due to low
productiontcost,tittistmostlytlocatedtintthetFartEast.tPhotovoltaictcellstproduced by the
majoritytofttoday’st most larget producerst aretmainly tmade toft crystallinet silicon as
semiconductort material.tSolartphotovoltaictmodules,twhichtareta result of combination of
photovoltaic cellsttotincreasettheirtpower,tarethighlytreliable,tdurabletandtlow noise devices
totproducetelectricity.tThetfueltfortthetphotovoltaictcelltistfree.tThetsuntis the only resource
that is requiredtfor tthetoperationtoftPVtsystems,tandtitstenergytistalmosttinexhaustible. A
typical photovoltaic cell efficiencytistaboutt15%,twhichtmeanstittcantconvert 1/6 of solar
energy into electricity.tPhotovoltaictsystemstproducetnotnoise,ttheretaretno moving parts and
they dotnottemittpollutantstintotthetenvironment.tTakingtintotaccounttthe energy consumed
in the productiontoftphotovoltaictcells,ttheytproducetseveralttenstofttimestless carbon
dioxide per
unittintrelationttotthetenergytproducedtfromtfossiltfuelttechnologies.tPhotovoltaic cell has
lifetime oftmoretthantthirtytyearstandtistonetoftthetmosttreliable semiconductor products.
Most solartcellstaretproducedtfromtsilicon,twhichtis non‐toxic and is foundtin abundance in
thetearth's crust. The increase in population and the pollution is the biggest issue that world is
facing, the use of conventional fuels is the key problem of pollution around the world.
Majority of countries ae moving to the RES. The use of solar is on the top, while the use of
wind is also increasing day by day. The sun is the main source of energy for the photovoltaic
which converts heat energy into electricity. Wind is use to drive the rotor of the WT which
converts kinetic energy to electrical energy. Both the sources are subjected to uncertainties
due to variation in atmospheric parameters. The word „photovoltaic“
consiststofttwotwords:tphoto,tatgreek word for light, and voltaic, which
definestthetmeasurementtvaluetbytwhichtthetactivitytoftthe electric field is expressed, i.e.
thetdifferencetoftpotentials.tPhotovoltaictsystemstuse cells to converttsunlight into
electricity. Convertingtsolartenergytintotelectricitytintatphotovoltaictinstallationtis the most
known way oftusingtsolartenergy.tThetlightthastatdualtcharactertaccording to quantum
physics.tLighttistatparticletandtittistatwave.tThetparticlestoftlighttare called photons. Photons

aretmasslesstparticles,tmovingtattlighttspeed.tThetenergytoftthetphoton depends on its
wavelengthtandtthetfrequency,tandtwetcantcalculatetit by the Einstein's law, which is:
E=hv
“E” is known as the photon energy
“h” is called the planck’s constant=6.626 x10-34
v- photon frequency
Part of thetphotontenergytistconsumedtfortthetelectrontgettingtfreetfrom the influence of the
atomtwhichtittistattachedtto,tandtthetremainingtenergytistconverted into kinetic energy of a
nowtfreetelectron.tFreetelectronstobtainedtbytthe photoelectric effect are also called
photoelectrons.tThetenergytrequiredttotreleasetatvalencetelectrontfromtthe impact of an atom
is calledtat„worktout“tWi,tandtittdependstontthettypetoftmaterialtintwhichtthetphotoelectric
effect hastoccurred.tThetequationtthattdescribestthistprocesstistastfollows:
hv=W i +W kin
W kin- kinetic energy of emitted electrons
W i- workout
hv- photon energy
Functioning of photo voltaic cell
η= Pel
Psol
= U . I
E . A
Pel- Electrical output power
Psol- Radiation power
U is the effective output voltage
I stands for effective electricity output
E stands for specific radiation power
A is the Area of PV
Energy conversiontefficiencytofta solar photovoltaic cell (η "ETA") is the percentage of
energy
from thetincidenttlighttthattactuallytendstuptastelectricity.tThististcalculatedtattthetpoint of
maximum power,tPm,tdividedtbytthetinputtlighttirradiationt(E,tintW/m2), all under standard
test conditions (STC) andtthetsurfacetoftphotovoltaictsolartcells (AC in m2).

η= Pm
E × Ac
Thetmosttcommontmaterialtfortthetproductiontoftsolartcellstistsilicon.tSilicon is obtained
from sand and is one of the most common elementstintthetearth'stcrust,tsottheretistnotlimittto
the availabilitytoftrawtmaterials.
Monocrystalline
polycrystalline,
Bar‐crystalline silicon,
thin‐film technology.
Cells madetfromtcrystaltsilicont(Si),taretmadetoftatthinlytsliced piece (wafer), a crystal of
silicon (monocrystalline) tor ta twhole tblockt oft silicont crystalst (multicrystalline);ttheir
efficiencytrangestbetweent12% and 19%.
Figure 3 Standalone solar system
2.2. Wind Turbine
AccordingttotEWEAtestimation,t12%toftthetpowertdemandtoftthetwhole world will be
providedtbytwintgenerationtfortyeart2020.tAttpresent,tthettotaltinstallation capacity of wind
powertgeneratorsthastreachedt31128tMWtandtthetgenerationtcosttpertkilowatt-hour has been
reducedtfromt38tcentstint1982ttot4tcentstint2001.tThetwindtpowertgeneratorstcan be
installedtbytgridtconnectiontwithtthetelectricaltnetwork.tFortthetoffshoretislandstor remote
areatwhichtcannottbetreachedtbytbulktpowertsystemtnetworks,tthetwind power generators
cantbetoperated-standalone ortintegratedtwithtdieseltgeneratorstandtphotovoltaic (PV) panels
totservetthetpowertdemandtThetutilizationtoftwindtenergytmay be an attractive alternative in
placestsuchtastoffshoretislands,twheretfueltistusuallytexpensivetandtwindtregimestare
particularly favourable. The windtpowertistmainlytgeneratedtbytrotatingtthetbladetof wind
turbinestviatthetairflowttotconverttthetwindtenergytintotelectricaltenergy.tThe wind power
generationtcantbetassumedttotbetvariedtwithtthetwindtspeed.tDispersedtpower generation
systems aretexpectedtastimportanttelectrictpowertsupplytsystemstfortthetnext generation.
Wind power generationtsystemt(WPGS)tistwidelytbeingtintroducedtintthetworldwide power
utilities. ThetWPGStoutputtpowertfluctuatestduettotwindtspeed variations. Hence, if a large
number oftwindtpowertgeneratorstaretconnectedttotthetgridtsystem,ttheir output can cause
serious powertqualitytproblems,tthattis,tfrequencytandtvoltagetfluctuationstmaythappen.tIn
order to solve thesetproblems,tthetsmoothingtcontroltoftwindtpowertgeneratortoutput is very
important

.tIntaddition,tSuperconductingtMagnettEnergytStoraget(SMES)tistsurelytonetoftthetkeyttech
nologiesttotovercometthese fluctuations.
Energy source - Solartradiationtdifferentiallytabsorbedtbytearthtsurfacetconverted through
convective processes duettottemperaturetdifferencestairtmotion.tFundamental Equation of
Wind PowertWindtPower depends on:
• Air (volume)
• velocity of wind
• Density of air, which is flowing through the surface of flux
Energy definition :
K . E= 1
2 m v2
Where m= dm
dt
Fluid mechanics gives mass flow rate
dm
dt =ρAV
So p= 1
2 ρA V 3
WT usage the wind’s kinetic energy to produce electrical energy which can be utilized in
residential and commercial purposes. Each wind turbinestcantbetusedttotgeneratetelectricity
on a small scaletttotpowertatsinglethome,tfortexample.tAtlargetnumbertof WT grouped
together, sometimes known tastatwind tfarm tor twindt park,t cantgeneratetelectricity on a
much larger scale.tAtwindtturbinetworkstliketathigh-techtversiontoftantold-
fashionedtwindmill. The wind blows on thet angled bladest of tthet rotor, tcausing tit ttot
spin,tconverting some of the wind’s kinetict energy intot mechanical tenergy.tSensorst
intthetturbinetdetect how strongly the windt istblowingtand tfrom twhich
tdirection.tThetrotortautomaticallytturnsttotfacetthe wind, and automaticallyt brakes tin
tdangerouslythightwindsttotprotecttthetturbine from damage. A shaft and
tgearboxtconnecttthetrotorttotatgeneratort(1),tsotwhentthetrotortspins, so does the generator.
Thetgeneratortusestantelectromagnetictfieldttotconverttthistmechanical energy into electrical
energy.tThetelectricaltenergytfromtthetgeneratortisttransmittedtalongtcables to a substation
(2). Here, thetelectricaltenergytgeneratedtbytalltthetturbinestintthetwindtfarm is combined
and converted to athightvoltage.tThetnationaltgridtusesthightvoltagesttottransmittelectricity
efficientlytthroughtthetpowertlinest(3)ttotthethomestandtbusinessestthat need it (4). Here,
otherttransformerstreducetthetvoltagetback down to a usable level.

End of preview

Want to access all the pages? Upload your documents or become a member.