Signals and Systems
VerifiedAdded on 2023/01/23
|11
|1844
|36
AI Summary
This document provides study material and solved assignments for Signals and Systems. It covers topics such as Fourier transform, auto-correlation, frequency shift, and more.
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
0SIGNALS AND SYSTEMS
SIGNALS AND SYSTEMS
Name of the Student
Name of the University
Author Note
SIGNALS AND SYSTEMS
Name of the Student
Name of the University
Author Note
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
1SIGNALS AND SYSTEMS
Question 1:
a) The given signal is
f(t) = 1 -3<t<3
= 0 Otherwise
The Fourier transform of the following signal is calculated by integration as given below.
F(ω) = ∫
−∞
∞
f ( t ) ∗e− j ω t dt = ∫
−3
3
1∗e− j ω t dt = −[e¿¿− jω t ]−3
3 ¿/jω = ( j
ω )∗( e−3 jω−e3 jω )
b) Now, the Fourier transform of e ( j 100t ) f ( 2t−10 ) is calculated using the Fourier transform
properties as given below.
F(f(2(t-5)) = 2*e^(-jω3)*F(jω) = 2*e^(-jω3)*( j
ω )∗( e−3 jω−e3 jω ) = (2j/ω)*(e−6 jω−1 ¿
Now, F(e ( jw0 t )∗x (t)¿=X ( ω−w 0)
Hence, F(e ( j 100t ) f ( 2t−10 ) ¿=¿ (2j/(ω-100))*(e−6 j(ω−100)−1 ¿
Question 2:
The inverse Fourier transform of F(ω) = 2δ(ω−4 ¿ + 2δ(ω+ 4 ¿ is calculated as given below.
The inverse Fourier transform is given by
g(t) = 1
2 π ∫
−∞
∞
G ( ω ) e j ω t d ω
Hence, f(t) = 1
2 π ∫
−∞
∞
( 2δ ( ω−4 ) + 2 δ ( ω+ 4 ) )e j ω t d ω
Now, by property of IFT of δ ( ω−w 0 ) = 1
√2 π e−w 0∗ jt
Question 1:
a) The given signal is
f(t) = 1 -3<t<3
= 0 Otherwise
The Fourier transform of the following signal is calculated by integration as given below.
F(ω) = ∫
−∞
∞
f ( t ) ∗e− j ω t dt = ∫
−3
3
1∗e− j ω t dt = −[e¿¿− jω t ]−3
3 ¿/jω = ( j
ω )∗( e−3 jω−e3 jω )
b) Now, the Fourier transform of e ( j 100t ) f ( 2t−10 ) is calculated using the Fourier transform
properties as given below.
F(f(2(t-5)) = 2*e^(-jω3)*F(jω) = 2*e^(-jω3)*( j
ω )∗( e−3 jω−e3 jω ) = (2j/ω)*(e−6 jω−1 ¿
Now, F(e ( jw0 t )∗x (t)¿=X ( ω−w 0)
Hence, F(e ( j 100t ) f ( 2t−10 ) ¿=¿ (2j/(ω-100))*(e−6 j(ω−100)−1 ¿
Question 2:
The inverse Fourier transform of F(ω) = 2δ(ω−4 ¿ + 2δ(ω+ 4 ¿ is calculated as given below.
The inverse Fourier transform is given by
g(t) = 1
2 π ∫
−∞
∞
G ( ω ) e j ω t d ω
Hence, f(t) = 1
2 π ∫
−∞
∞
( 2δ ( ω−4 ) + 2 δ ( ω+ 4 ) )e j ω t d ω
Now, by property of IFT of δ ( ω−w 0 ) = 1
√2 π e−w 0∗ jt
2SIGNALS AND SYSTEMS
Hence, F−1(2δ(ω−4 ¿ + 2δ(ω+ 4 ¿) = 2*F−1 ( δ ( ω−4 ) ) +2∗F−1 ( δ ( ω+4 ) )
= 2* 1
√2 π e−4∗ jt + 2
√ 2 π e4∗ jt
= √ 2
π (e−4∗ jt + e4∗ jt )
Question 3:
h ( t )=u ( t )∗e−4 t
H(ω ¿ = (( 4− j ω)
√2 π )
Y(ω ¿ = H(ω ¿*X( ω ¿
X(ω ¿ = rect( ω /2¿
Hence, Y(ω ¿ = ( ( 4− j ω)
√ 2 π )rect(ω / 2¿
Question 4:
a) y(t) = 1 + cos(πt) -1<t<1
= 0 otherwise
x(t) = 1 -1<t<1
= 0 otherwise
y(t) = x(t)s(t)
MATLAB code:
t = -1:0.1:1;
x = ones(1,length(t));
s = 1 + cos(pi.*t);
Hence, F−1(2δ(ω−4 ¿ + 2δ(ω+ 4 ¿) = 2*F−1 ( δ ( ω−4 ) ) +2∗F−1 ( δ ( ω+4 ) )
= 2* 1
√2 π e−4∗ jt + 2
√ 2 π e4∗ jt
= √ 2
π (e−4∗ jt + e4∗ jt )
Question 3:
h ( t )=u ( t )∗e−4 t
H(ω ¿ = (( 4− j ω)
√2 π )
Y(ω ¿ = H(ω ¿*X( ω ¿
X(ω ¿ = rect( ω /2¿
Hence, Y(ω ¿ = ( ( 4− j ω)
√ 2 π )rect(ω / 2¿
Question 4:
a) y(t) = 1 + cos(πt) -1<t<1
= 0 otherwise
x(t) = 1 -1<t<1
= 0 otherwise
y(t) = x(t)s(t)
MATLAB code:
t = -1:0.1:1;
x = ones(1,length(t));
s = 1 + cos(pi.*t);
3SIGNALS AND SYSTEMS
y = s.*x;
plot(t,x,'m-',t,s,'rd',t,y,'b-')
xlim([-5,5])
legend('x(t)','s(t)','y(t)')
xlabel('time t')
ylabel('signal')
Plot:
-5 -4 -3 -2 -1 0 1 2 3 4 5
time t
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
signal
x(t)
s(t)
y(t)
b) The Fourier transform of x(t) is
F(x(t)) = ∫
−∞
∞
f ( t )∗e− j ω t dt = ∫
−1
1
1∗e− j ω t dt = ( j
ω )∗( e− jω−e jω ) = X( jω ¿
c) Now, the Fourier transform of s(t) is
y = s.*x;
plot(t,x,'m-',t,s,'rd',t,y,'b-')
xlim([-5,5])
legend('x(t)','s(t)','y(t)')
xlabel('time t')
ylabel('signal')
Plot:
-5 -4 -3 -2 -1 0 1 2 3 4 5
time t
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
signal
x(t)
s(t)
y(t)
b) The Fourier transform of x(t) is
F(x(t)) = ∫
−∞
∞
f ( t )∗e− j ω t dt = ∫
−1
1
1∗e− j ω t dt = ( j
ω )∗( e− jω−e jω ) = X( jω ¿
c) Now, the Fourier transform of s(t) is
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
4SIGNALS AND SYSTEMS
F(s(t)) = F(1 + cos(πt)) = F(1) + F(cos(πt)) = ( j
ω )∗( e− jω−e jω ) − jω exp (− jω ) ( exp ( 2 jω )−1 )
j2 ω2 +π 2
¿ ( π 2 )∗exp ( − jω ) ( exp ( 2 j ω ) −1 )
jω ( j2 ω2 +π 2 ) = S( jω ¿
d) Now, by the property of Fourier transform product in time domain = convolution in
frequency domain.
Hence, by formula
F(y(t)) = F(x(t)s(t)) = X( jω ¿∗S ( jω) = ( 1
2 π )∗∫
−1
1
X ( j ω' ) S ( j ( ω−ω' ) ) d ω'
Now, computing the integral we get the same result as
Y(ω ¿ = ( π 2 )∗exp ( − j ω ) ( exp ( 2 j ω ) −1 )
jω ( j2 ω2 +π 2 )
Question 5:
a) Given signal,
x(t) = 4, 0< t <2
= 0 Otherwise
Energy spectral density E = ∫
0
2
[ x ( t ) ]
2
dt = ∫
0
2
[ 4 ] 2
dt = 16*2 = 32.
b) The auto-correlation function of the continuous-time signal is given by,
Rff(τ) = ∫
0
2
x ( t+ τ ) x (t )' d t= ∫
0
2
2∗2 d t= ∫
0
2
4 d t= 4(2-0)= 8.
c) The Parseval’s theorem of the signal is given by,
F(s(t)) = F(1 + cos(πt)) = F(1) + F(cos(πt)) = ( j
ω )∗( e− jω−e jω ) − jω exp (− jω ) ( exp ( 2 jω )−1 )
j2 ω2 +π 2
¿ ( π 2 )∗exp ( − jω ) ( exp ( 2 j ω ) −1 )
jω ( j2 ω2 +π 2 ) = S( jω ¿
d) Now, by the property of Fourier transform product in time domain = convolution in
frequency domain.
Hence, by formula
F(y(t)) = F(x(t)s(t)) = X( jω ¿∗S ( jω) = ( 1
2 π )∗∫
−1
1
X ( j ω' ) S ( j ( ω−ω' ) ) d ω'
Now, computing the integral we get the same result as
Y(ω ¿ = ( π 2 )∗exp ( − j ω ) ( exp ( 2 j ω ) −1 )
jω ( j2 ω2 +π 2 )
Question 5:
a) Given signal,
x(t) = 4, 0< t <2
= 0 Otherwise
Energy spectral density E = ∫
0
2
[ x ( t ) ]
2
dt = ∫
0
2
[ 4 ] 2
dt = 16*2 = 32.
b) The auto-correlation function of the continuous-time signal is given by,
Rff(τ) = ∫
0
2
x ( t+ τ ) x (t )' d t= ∫
0
2
2∗2 d t= ∫
0
2
4 d t= 4(2-0)= 8.
c) The Parseval’s theorem of the signal is given by,
5SIGNALS AND SYSTEMS
Power P = ∫
−∞
∞
|x ( t )|
2
dt= 1
2 π ∫
−∞
∞
| X ( ω )|
2
dω = ∫
−∞
∞
| X ( 2 πf )|
2
df
d) The energy spectral density of the output signal is given by,
ESD = |H ( ω )|2
∗|X ( ω )|2
Where, H(ω) = F(h(t)) = 1/(2 + jω)
X(ω) = 4(1-exp(-j2ω))/(jω)
|X(ω)|^2 = (16/ω^2)
Hence, ESD = (16/(ω^2)(4 + ω^2))
e) The total energy of output signal is given by,
E = ∫
0
2
( 16
( ω2 ) ( 4+ω2 ) ) d ω
f) The MATLAB code for plot of x(t), h(t), autocorrelation of x(t) and spectral density of
input x(t) and y(t) is given below.
MATLAB code:
t = 0:0.1:2;
x = repmat(4,1,length(t));
h = exp(-2.*t);
y = h.*x;
autocorrx = xcorr(x);
inputpsd = dspdata.psd(x);
figure(1)
Power P = ∫
−∞
∞
|x ( t )|
2
dt= 1
2 π ∫
−∞
∞
| X ( ω )|
2
dω = ∫
−∞
∞
| X ( 2 πf )|
2
df
d) The energy spectral density of the output signal is given by,
ESD = |H ( ω )|2
∗|X ( ω )|2
Where, H(ω) = F(h(t)) = 1/(2 + jω)
X(ω) = 4(1-exp(-j2ω))/(jω)
|X(ω)|^2 = (16/ω^2)
Hence, ESD = (16/(ω^2)(4 + ω^2))
e) The total energy of output signal is given by,
E = ∫
0
2
( 16
( ω2 ) ( 4+ω2 ) ) d ω
f) The MATLAB code for plot of x(t), h(t), autocorrelation of x(t) and spectral density of
input x(t) and y(t) is given below.
MATLAB code:
t = 0:0.1:2;
x = repmat(4,1,length(t));
h = exp(-2.*t);
y = h.*x;
autocorrx = xcorr(x);
inputpsd = dspdata.psd(x);
figure(1)
6SIGNALS AND SYSTEMS
subplot(2,1,1)
plot(inputpsd)
title('plot of input PSD')
outputpsd = dspdata.psd(y);
subplot(2,1,2)
plot(outputpsd)
title('plot of output PSD')
figure(2)
subplot(2,2,1)
plot(t,x)
title('x(t)')
subplot(2,2,2)
plot(t,h)
title('h(t)')
subplot(2,2,[3 4])
plot(autocorrx)
title('autocorrelation signal of x(t)')
energyx = sum(x.^2)
energyy = sum(y.^2)
Output:
subplot(2,1,1)
plot(inputpsd)
title('plot of input PSD')
outputpsd = dspdata.psd(y);
subplot(2,1,2)
plot(outputpsd)
title('plot of output PSD')
figure(2)
subplot(2,2,1)
plot(t,x)
title('x(t)')
subplot(2,2,2)
plot(t,h)
title('h(t)')
subplot(2,2,[3 4])
plot(autocorrx)
title('autocorrelation signal of x(t)')
energyx = sum(x.^2)
energyy = sum(y.^2)
Output:
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
7SIGNALS AND SYSTEMS
energyx =
336
energyy =
48.5210
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency ( rad/sample)
5
5.5
6
6.5
7
Power/frequency (dB/(rad/sample))
plot of input PSD
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency ( rad/sample)
-10
-5
0
5
10
Power/frequency (dB/(rad/sample))
plot of output PSD
energyx =
336
energyy =
48.5210
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency ( rad/sample)
5
5.5
6
6.5
7
Power/frequency (dB/(rad/sample))
plot of input PSD
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency ( rad/sample)
-10
-5
0
5
10
Power/frequency (dB/(rad/sample))
plot of output PSD
8SIGNALS AND SYSTEMS
0 0.5 1 1.5 2
3
3.5
4
4.5
5 x(t)
0 0.5 1 1.5 2
0
0.5
1 h(t)
0 5 10 15 20 25 30 35 40 45
0
100
200
300
400 autocorrelation signal of x(t)
Question 6:
The frequency of the cosine wave of 2.2 MHz which is sampled by rate 5 Msamples/sec and
then reconstructed.
The frequency of the reconstructed signal = 2.2/5 = 0.44 MHz
Question 7:
The frequency shift property of Fourier transform is given by,
F(e(jω0t)) = X(j(ω – ω0))
This can be proved by the following,
F(e(jω0t)) =
Question 8:
0 0.5 1 1.5 2
3
3.5
4
4.5
5 x(t)
0 0.5 1 1.5 2
0
0.5
1 h(t)
0 5 10 15 20 25 30 35 40 45
0
100
200
300
400 autocorrelation signal of x(t)
Question 6:
The frequency of the cosine wave of 2.2 MHz which is sampled by rate 5 Msamples/sec and
then reconstructed.
The frequency of the reconstructed signal = 2.2/5 = 0.44 MHz
Question 7:
The frequency shift property of Fourier transform is given by,
F(e(jω0t)) = X(j(ω – ω0))
This can be proved by the following,
F(e(jω0t)) =
Question 8:
9SIGNALS AND SYSTEMS
Given that x(t) is purely imaginary
From the Fourier transform property it is known that
If, F(x(t)) = X(jω) then F(x*(t)) = X*(-jω)
Now, if x(t) = ja, where, a is any constant
F(ja) = aX(ω) and F(-ja) = (-a)X*(-ω)
Hence, X(ω) = - X*(-ω)
Question 9:
h(t) = Real(g(t)*exp(jω0t))
H(ω) = F(h(t))
Re(z) = (z + z’)/2
Let, z = a + jb, z’ = a – jb
Re(z) = a
Hence, F(Re(z)) = a*delta(t)
Given that x(t) is purely imaginary
From the Fourier transform property it is known that
If, F(x(t)) = X(jω) then F(x*(t)) = X*(-jω)
Now, if x(t) = ja, where, a is any constant
F(ja) = aX(ω) and F(-ja) = (-a)X*(-ω)
Hence, X(ω) = - X*(-ω)
Question 9:
h(t) = Real(g(t)*exp(jω0t))
H(ω) = F(h(t))
Re(z) = (z + z’)/2
Let, z = a + jb, z’ = a – jb
Re(z) = a
Hence, F(Re(z)) = a*delta(t)
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
10SIGNALS AND SYSTEMS
1 out of 11
Related Documents
Your All-in-One AI-Powered Toolkit for Academic Success.
+13062052269
info@desklib.com
Available 24*7 on WhatsApp / Email
Unlock your academic potential
© 2024 | Zucol Services PVT LTD | All rights reserved.