ProductsLogo
LogoStudy Documents
LogoAI Grader
LogoAI Answer
LogoAI Code Checker
LogoPlagiarism Checker
LogoAI Paraphraser
LogoAI Quiz
LogoAI Detector
PricingBlogAbout Us
logo

Determining Eigenvalues and Eigenvectors for a Given Matrix

Verified

Added on  2019/11/25

|42
|948
|669
Report
AI Summary
The assignment consists of six questions related to linear algebra, specifically involving matrices and eigenvalues. Questions cover topics such as finding the eigenvalues and eigenvectors of a given matrix, checking if a computed matrix is correct based on its eigenvalues, and determining the condition of a matrix based on its properties.

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
SIT292 LINEAR ALGEBRA 2017
ASSIGNMENT 2
STUDENT ID
[Pick the date]

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Question 1
(i) Given matrix
A=
[ 3 2 1
1 1 2
1 2 0 ]
Cofactors Ci jof the matrix
Ci j=¿
C11=¿
C12 =¿
C13 =¿
C21 =¿
C22 =¿
C23 =¿
C31 =¿
C32 =¿
C33 =¿
Hence, cofactors of the matrix A would be given below:
1
Document Page
Cofactors A= [ 4 2 1
2 1 4
3 5 1 ]
Adj Aof the matrix A would be given below:
Adj A= [ 4 2 3
2 1 5
1 4 1 ]
(ii) Verification that computed adj Ais correct.
If A( adj A )
det A =I
Now,
LHS
A( adj A )= [ 3 2 1
1 1 2
1 2 0 ]. [ 4 2 3
2 1 5
1 4 1 ]
¿ [ 3.4+2. (2)+1.(1) 3.(2)+2.1+1.4 3.3+ 2.(5)+ 1.1
1.4+1.(2)+2.(1) 1.(2)+1.1+2.4 1.3+ 1.(5)+ 2.1
1.4 +(2) .(2)+0.(1) ( 1 ) . ( 2 ) +(2).1+ 0.4 (1).3+(2). (5)+ 0.1 ]
¿ [ 7 0 0
0 7 0
0 0 7 ]
And
A=
[ 3 2 1
1 1 2
1 2 0 ] 2
Document Page
det A=
| 3 2 1
1 1 2
1 2 0|
¿ 3 ( 0+ 4 ) 2 ( 0+ 2 )+ 1 (2+1 )
¿ 1241
¿ 7
A( adj A )
det A =
[ 7 0 0
0 7 0
0 0 7 ]7 = [ 1 0 0
0 1 0
0 0 1 ]
RHS
I =
[1 0 0
0 1 0
0 0 1 ]
LHS = RHS
It is apparent that both the sides are equal and therefore, the computed adj A is correct.
3

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Question 2
Two vectors would be orthogonal when there dot product becomes zero.
¿ 7 + . +3 . (3 ) +1.1+ (4 ) .4
¿ 7 + 2 9 +116
¿ 22 15
Hence,
22 15=0
( 5 ) ( +3 )=0
4
Document Page
=5 ,3
Therefore, the for =5 ,3the vectors would be orthogonal .
Question 3
Given equations
Gaussian elimination method to reduce the following system of equations into row echelon form
is applied below:
5
Document Page
The row echelon form of the given system is given below:
This system does not have any solution because 0 5 .
It is apparent from the above that the given system has three linear equations and 4 variables.
Hence, the system is said to be inconsistent and does not have any solution as evident from the
above.
6

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Question 4
Eigen values and eigenvectors of the given matrixes are as highlighted below:
For matrix A
Eigen values
A=
[1 0 1
0 1 0
1 0 1 ]
Let λ is the eigenvalues of the given matrix in such a way that
det ( A¿ λI )=0 ¿
Now,
AλI = [1 0 1
0 1 0
1 0 1 ]λ [1 0 0
0 1 0
0 0 1 ]
AλI = [ 1 0 1
0 1 0
1 0 1 ]
[|
λ 0 0
0 λ 0
0 0 λ|]
AλI = [ 1λ 0 1
0 1λ 0
1 0 1λ ]
7
Document Page
Determinant of AλI
|AλI |=
|1λ 0 1
0 1λ 0
1 0 1 λ|
¿ ( 1 λ ) { 0 ( 1λ ) ( 1λ ) }0 { 00 }+1 { 0 ( 1λ ) }
¿ ( 1 λ ) ¿
¿ ( 1 λ ) ¿
¿ ( 1 λ ) { ( λ1 )21 }
¿ ( 1 λ ) { λ22 λ+ 11 }
¿ ( 1 λ ) ( λ22 λ )
det ( A¿ λI )= λ ( 1λ ) ( λ2 ) ¿
Now,
det ( A¿ λI )=0 ¿
λ ( 1 λ ) ( λ2 ) =0
λ=0 ,
1 λ=0
λ=1 ,
λ2=0
λ=2
8
Document Page
Therefore, the eigenvalues of matrix A is 0,1,2.
Eigenvectors
Let the eigenvector is ϑ, such that ( Aλ I ) ϑ =0 for each of the corresponding eigenvalue.
Now,
For eigenvalue λ=0 ,
( A0 I ) ϑ =0
( [1 0 1
0 1 0
1 0 1 ]0 [1 0 0
0 1 0
0 0 1 ] ) [ x
y
z ]= [0
0
0 ]
[1 0 1
0 1 0
0 0 0 ][ x
y
z ]= [0
0
0 ]
x + z=0
y=0
Now, x=z
y=0
z=z
Eigenvector
[ x
y
z ]= [z
0
z ] 9

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Let z=1hence ,
Eigenvector for λ=0 is [1
0
1 ]
For eigenvalue λ=1 ,
( A1 I ) ϑ=0
( [1 0 1
0 1 0
1 0 1 ]1 [1 0 0
0 1 0
0 0 1 ]) [ x
y
z ]= [0
0
0 ]
[0 0 1
0 0 0
1 0 0 ][ x
y
z ]= [0
0
0 ]
Now reduce the matrix into row echelon form as
[a . b
0 .
0 0 c ]
[0 0 1
0 0 0
1 0 0 ]: [1 0 0
0 0 0
0 0 1 ]
Further,
Reduce the matrix to reduced row echelon form
[1 0 b
0 0 0
0 0 1 ] 10
Document Page
[1 0 0
0 0 0
0 0 1 ]: [1 0 0
0 0 1
0 0 0 ]
Hence,
[1 0 0
0 0 1
0 0 0 ][ x
y
z ]= [0
0
0 ]
x=0
z=0
Eigenvector
[ x
y
z ]= [ 0
y
0 ]= [0
0
0 ]
Let y=1hence ,
Eigenvector for λ=1 , is [ 0
1
0 ]
Eigenvector for λ=2
( A2 I ) ϑ=0
( [1 0 1
0 1 0
1 0 1 ]2 [1 0 0
0 1 0
0 0 1 ] ) [ x
y
z ]= [0
0
0 ]
11
Document Page
[1 0 1
0 1 0
1 0 1 ][ x
y
z ]= [0
0
0 ]
Reduce the above matrix as
[a b
0 ..
0 0 c ]
[1 0 1
0 1 0
0 0 0 ]
Now reduce the matrix into reduced row echelon form as
[1 b
0 ..
0 0 1 ]
[1 0 1
0 1 0
0 0 0 ]
[1 0 1
0 1 0
0 0 0 ][ x
y
z ]= [0
0
0 ]
xz=0
y=0
Now, x=z
y=0
12

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
z=z
Eigenvector
[ x
y
z ]= [ z
0
z ]
Let z=1hence ,
Eigenvector for λ=2 is [ 1
0
1 ]
Therefore, the eigenvectors of matrix A is [1
0
1 ], [0
1
0 ], [1
0
1 ]
For matrix B
Eigen values
B= [3 2 1
3 2 1
3 2 1 ]
Let λ is the eigenvalues of the given matrix in such a way that
det (B¿ λI)=0 ¿
Now,
BλI = [ 3 2 1
3 2 1
3 2 1 ] λ [ 1 0 0
0 1 0
0 0 1 ]
13
Document Page
BλI = [ 3 2 1
3 2 1
3 2 1 ]
[|
λ 0 0
0 λ 0
0 0 λ|]
BλI = [ 3 λ 2 1
3 2λ 1
3 2 1λ ]
Determinant of BλI
|B λI|=
|3λ 2 1
3 2λ 1
3 2 1λ |
¿ ( 3λ ) ( λ2 3 λ ) 2 (3 λ ) +1.(3 λ)
¿ ( λ6 ) λ2
det (B¿ λI)= ( λ6 ) λ2 ¿
Now,
det (B¿ λI)=0 ¿
( λ6 ) λ2=0
( λ6 ) λ2=0 ,
λ=0 ,
λ6=0
λ=6
Therefore, the eigenvalues of matrix B is 0 , 6 .
14
Document Page
Eigenvectors
Let the eigenvector is ϑ, such that ( Bλ I ) ϑ=0 for each of the corresponding eigenvalue.
Now,
For eigenvalue λ=0 ,
( B0 I ) ϑ=0
( [3 2 1
3 2 1
3 2 1 ]0 [1 0 0
0 1 0
0 0 1 ] ) [ x
y
z ]= [0
0
0 ]
[3 2 1
3 2 1
3 2 1 ][ x
y
z ]= [0
0
0 ]
Now reduce the matrix into row echelon form as
[a . b
0 .
0 0 c ]
[3 2 1
3 2 1
3 2 1 ]: [3 2 1
0 0 0
0 0 0 ]
Now reduce the matrix into reduced row echelon form as
[1 0 b
0 0 0
0 0 1 ]
[ 3 2 1
0 0 0
0 0 0 ] :
[ 1 2
3
1
3
0 0 0
0 0 0 ] 15

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Hence,
[ 1 2
3
1
3
0 0 0
0 0 0 ] [ x
y
z ]= [ 0
0
0 ]
x +( 2
3 ) y +( 1
3 ) z=0
x= ( 2
3 ) y( 1
3 ) z
Now,
Eigenvector
[ ( 2
3 ) y ( 1
3 ) z
y
z ]=
[ ( 2
3 ) y
y
0 ] +
[ ( 1
3 ) z
0
z ] where , yz 0
Let yz =1
[( 2
3 )
1
0 ] ,
[ ( 1
3 )
0
1 ]
Eigenvector for λ=0 is
[ ( 2
3 )
1
0 ] ,
[ ( 1
3 )
0
1 ]
For eigenvalue λ=6 ,
( B0 I ) ϑ=0
16
Document Page
( [3 2 1
3 2 1
3 2 1 ]6 [1 0 0
0 1 0
0 0 1 ] ) [ x
y
z ]=
[0
0
0 ]
[ 3 2 1
3 4 1
3 2 5 ][ x
y
z ] = [ 0
0
0 ]
Now reduce the matrix into row echelon form as
[a . b
0 .
0 0 c ]
[3 2 1
3 4 1
3 2 5 ]: [3 2 1
0 4 4
0 0 0 ]
Now reduce the matrix into reduced row echelon form as
[1 0 b
0 0 0
0 0 1 ]
[ 3 2 1
0 4 4
0 0 0 ] : [ 1 0 1
0 1 1
0 0 0 ]
Hence,
[1 0 1
0 1 1
0 0 0 ][ x
y
z ]= [0
0
0 ]
xz=0
yz =0
17
Document Page
Now,
x=z
y=z
[ x
y
z ]= [ z
z
z ]
z 0hence let z=1
[ z
z
z ]= [1
1
1 ]
Eigenvector for λ=6 is [1
1
1 ]
Question 5
(a) Eigen values and eigenvectors of the given matrixes
Given
A=
[1 1 4
0 1 1
0 0 2 ]
Let λ is the eigenvalues of the given matrix in such a way that
det ( A¿ λI )=0 ¿
Now,
18

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
AλI = [1 1 4
0 1 1
0 0 2 ]λ [1 0 0
0 1 0
0 0 1 ]
AλI = [ 1 1 4
0 1 1
0 0 2 ] [ λ 0 0
0 λ 0
0 0 λ ]
AλI = [1λ 1 4
0 1λ 1
0 0 2λ ]
Determinant of AλI
| AλI |=
|
1λ 1 4
0 1λ 1
0 0 2λ|
¿ ( 1 λ ) (λ2λ2)1 {00 }+ 4 { 00 }
¿ ( 1 λ ) (λ2)(λ+1)
det ( A¿ λI )= ( 1λ ) ( λ2)( λ +1)¿
Now,
det ( A¿ λI )=0 ¿
( 1 λ ) ( λ2 ) ( λ+1 ) =0
1 λ=0 ,
λ=1 ,
λ2=0
19
Document Page
λ=2 ,
λ+1=0
λ=1
Therefore, the eigenvalues of matrix A is 1 ,2 ,1.
Eigenvectors
Let the eigenvector is ϑ, such that ( Aλ I ) ϑ =0 for each of the corresponding eigenvalue.
Now,
For eigenvalue λ=1 ,
( A1 I ) ϑ=0
( [1 1 4
0 1 1
0 0 2 ]1 [1 0 0
0 1 0
0 0 1 ] ) [ x
y
z ]= [0
0
0 ]
[ 0 1 4
0 2 1
0 0 1 ][ x
y
z ] =
[ 0
0
0 ]
Now reduce the matrix into row echelon form as
[1 . b
0 .
0 0 1 ]
20
Document Page
[ 0 1 4
0 2 1
0 0 1 ] : [ 0 1 0
0 0 0
0 0 1 ]
Hence,
[0 1 0
0 0 0
0 0 1 ][ x
y
z ]= [0
0
0 ]
y=0
z=0
Now,
[ x
y
z ]= [ x
0
0 ]
Let x=1hence ,
Eigenvector for λ=0 is [1
0
0 ]
For eigenvalue λ=2 ,
( A2 I ) ϑ=0
( [1 1 4
0 1 1
0 0 2 ]2 [1 0 0
0 1 0
0 0 1 ] ) [ x
y
z ]=
[0
0
0 ]
21

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
[1 1 4
0 3 1
0 0 0 ][ x
y
z ]=
[0
0
0 ]
Now reduce the matrix into row echelon form as
[1 . b
0 .
0 0 1 ]
[1 1 4
0 3 1
0 0 0 ]: [1 1 4
0 3 1
0 0 0 ]
Now reduce the matrix into reduced row echelon form as
R 2 (1
3 ) R 2
[ 1 1 4
0 1 1
3
0 0 0 ]
R 1 R 1 ( 1. R 2 )
[ 1 0 13
3
0 1 1
3
0 0 0 ]
R 1R1
[1 0 13
3
0 1 1
3
0 0 0 ] 22
Document Page
Hence,
[1 0 13
3
0 1 1
3
0 0 0 ].
[ x
y
z ]= [0
0
0 ]
x (13
3 )z =0
y ( 1
3 ) z=0
And,
x= (13
3 )z y=( 1
3 )z
Now,
[ x
y
z ]=
[ ( 13
3 ) z
( 1
3 ) z
z ]
Let z=1hence ,
Eigenvector for λ=2 is
[ ( 13
3 )
( 1
3 )
1 ]
23
Document Page
For eigenvalue λ=1 ,
( A(1)I ) ϑ =0
( [1 1 4
0 1 1
0 0 2 ](1) [1 0 0
0 1 0
0 0 1 ] ) [ x
y
z ]=
[0
0
0 ]
[2 1 4
0 0 1
0 0 3 ][ x
y
z ]= [0
0
0 ]
Now reduce the matrix into row echelon form as
[1 . b
0 .
0 0 1 ]
[ 2 1 4
0 0 1
0 0 3 ] :
[ 1 1
2 0
0 0 1
0 0 0 ]
Hence,
[1 1
2 0
0 0 1
0 0 0 ] [ x
y
z ]= [0
0
0 ]
x +( 1
2 ) y=0
z=0
Now,
24

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
x= ( 1
2 ) y z=0
[ x
y
z ]=
[( 1
2 ) y
y
0 ]
Let y=1hence ,
Eigenvector for λ=1 is
[ ( 1
2 )
1
0 ]
For matrix B
B= [2 2 1
0 1 3
0 0 1 ]
Let λ is the eigenvalues of the given matrix in such a way that
det (B¿ λI)=0 ¿
Now,
BλI = [2 2 1
0 1 3
0 0 1 ]λ [1 0 0
0 1 0
0 0 1 ]
BλI = [2 2 1
0 1 3
0 0 1 ] [λ 0 0
0 λ 0
0 0 λ ] 25
Document Page
BλI = [2λ 2 1
0 1 λ 3
0 0 1λ ]
Determinant of BλI
|B λI|=
|2λ 2 1
0 1λ 3
0 0 1λ |
¿ ( 2 λ ) (λ21)2 { 0 } +1 { 00 }
¿ ( 2 λ ) (λ21)
det ( B¿ λI )= ( 2λ ) (λ21)¿
Now,
det (B¿ λI)=0 ¿
( 2 λ ) (λ21)=0
( 2 λ ) ( λ1 ) ( λ+1 ) =0 ,
λ=1 ,1 , 2
Therefore, the eigenvalues of matrix A is 1 ,1 , 2.
Eigenvectors
Let the eigenvector is ϑ, such that ( Aλ I ) ϑ =0 for each of the corresponding eigenvalue.
Now,
For eigenvalue λ=1 ,
26
Document Page
( B1 I ) ϑ =0
( [ 2 2 1
0 1 3
0 0 1 ] 1 [ 1 0 0
0 1 0
0 0 1 ] ) [ x
y
z ] =
[ 0
0
0 ]
[ 1 2 1
0 0 3
0 0 2 ][ x
y
z ] = [ 0
0
0 ]
Now reduce the matrix into row echelon form as
[1 . b
0 .
0 0 1 ]
[ 1 2 1
0 0 3
0 0 2 ] : [ 1 2 0
0 0 1
0 0 0 ]
Hence,
[1 2 0
0 0 1
0 0 0 ][ x
y
z ]= [0
0
0 ]
x +2 y =0 and x=2 y
z=0
Now,
[ x
y
z ]= [2 y
y
z ]
Let y=1hence ,
27

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Eigenvector for λ=0 is [2
1
0 ]
For eigenvalue λ=1
( B(1) I ) ϑ=0
( [2 2 1
0 1 3
0 0 1 ](1) [1 0 0
0 1 0
0 0 1 ]) [ x
y
z ]= [0
0
0 ]
[3 2 1
0 2 3
0 0 0 ][ x
y
z ]= [0
0
0 ]
Now reduce the matrix into row echelon form as
[1 . b
0 .
0 0 1 ]
[3 2 1
0 2 3
0 0 0 ]:
[1 0 2
3
0 1 3
2
0 0 0 ]
Hence,
[ 1 0 2
3
0 1 3
2
0 0 0 ] [ x
y
z ]= [ 0
0
0 ]
28
Document Page
x 2
3 z=0x= 2
3 z
y +( 3
2 )z=0 y =(3
2 ) z
Now,
[ x
y
z ]=
[ 2
3 z
( 3
2 ) z
z ]
Let z=1hence ,
Eigenvector for λ=1 is
[ 2
3
( 3
2 )
1 ]
For eigenvalue λ=2
( B(2)I ) ϑ=0
( [ 2 2 1
0 1 3
0 0 1 ] (2) [ 1 0 0
0 1 0
0 0 1 ]) [ x
y
z ] = [ 0
0
0 ]
[ 0 2 1
0 1 3
0 0 3 ][ x
y
z ] = [ 0
0
0 ]
Now reduce the matrix into row echelon form as
29
Document Page
[1 . b
0 .
0 0 1 ]
[ 0 2 1
0 1 3
0 0 3 ] : [ 0 1 0
0 0 0
0 0 1 ]
Hence,
[0 1 0
0 0 0
0 0 1 ][ x
y
z ]= [0
0
0 ]
y=0
z=0
Now,
[ x
y
z ]= [ x
0
0 ]
Let x=1hence ,
Eigenvector for λ=2 is [ 1
0
0 ]
(b) Condition P1 AP=B
Given matrix
A = [1 1 4
0 1 1
0 0 2 ] 30

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
B= [2 2 1
0 1 3
0 0 1 ]
In this case, the above condition would be fulfilled only when P would be and invertible matrix
and matrix B would be a diagonal matrix.
However, it is apparent from the above that matrix B is not a diagonal matrix and hence, matrix
P would not be determined for the condition P1 AP=B .
Question 6
Given matrix
31
Document Page
A = [3 2 1
3 8 3
3 6 1 ]
(a) Eigenvalues of the given matrix
Let λ is the eigenvalues of the given matrix in such a way that
det ( A¿ λI )=0 ¿
Now,
AλI = [3 2 1
3 8 3
3 6 1 ] λ [1 0 0
0 1 0
0 0 1 ]
AλI = [3 2 1
3 8 3
3 6 1 ] [ λ 0 0
0 λ 0
0 0 λ ]
AλI = [3λ 2 1
3 8 λ 3
3 6 1λ ]
Determinant of AλI
| AλI |=
|
3λ 2 1
3 8λ 3
3 6 1λ |
¿ ( 3λ ) ( λ2 7 λ+10 ) 2 ( 63 λ )1 .3 ( λ2 )
¿ ( 3λ ) ( λ2 ) ( λ5 )12+6 λ3 λ+6
¿ ( 3λ ) ( λ2 ) ( λ5 )+3 λ6
¿ ( 3λ ) ( λ2 ) ( λ5 )+3 ( λ2 )
32
Document Page
¿ ( λ2 ) { ( 3 λ ) ( λ5 ) + 3 }
¿ ( λ2 ) { 3 λ15λ2+5 λ+ 3 }
¿ ( λ2 ) {λ2 +8 λ12 }
¿ ( λ2 ) { λ28 λ +12 }
¿ ( λ2 ) ( λ6 ) ( λ2 )
det ( A¿ λI )= ( λ2 ) ( λ6 ) ( λ2 ) ¿
Now,
det ( A¿ λI )=0 ¿
( λ2 ) ( λ6 ) ( λ2 ) =0
λ=2 ,2 , 6
Therefore, the eigenvalues of matrix A is 2 , 2, 6 .
(b) Eigenvectors for each of the eigenvalue
Eigenvectors
Let the eigenvector is ϑ, such that ( Aλ I ) ϑ =0 for each of the corresponding eigenvalue.
Now,
For eigenvalue λ=2 ,
( A2 I ) ϑ=0
33

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
( [3 2 1
3 8 3
3 6 1 ]2 [1 0 0
0 1 0
0 0 1 ]) [ x
y
z ]= [0
0
0 ]
[1 2 1
3 6 3
3 6 3 ][ x
y
z ]= [0
0
0 ]
Now reduce the matrix into row echelon form as
[a . b
0 .
0 0 c ]
[ 1 2 1
3 6 3
3 6 3 ] : [ 3 6 3
0 0 0
0 0 0 ]
Now reduce the matrix into reduced row echelon form as
[1 . b
0 .
0 0 1 ]
[3 6 3
0 0 0
0 0 0 ]: [1 2 1
0 0 0
0 0 0 ]
Hence,
[1 2 1
0 0 0
0 0 0 ][ x
y
z ]= [0
0
0 ]
x +2 y z=0 and x=2 y + z
z=0
34
Document Page
Now,
[ x
y
z ]= [2 y +z
y
z ] or ¿ [
2 y
y
0 ] + [ z
0
z ]
Where, yz 0
Let y=1z=1
hence ,
Eigenvector for λ=2 is [2
1
0 ], [ 1
0
1 ]
For eigenvalue λ=6 ,
( A2 I ) ϑ=0
( [3 2 1
3 8 3
3 6 1 ]6 [1 0 0
0 1 0
0 0 1 ] ) [ x
y
z ]= [0
0
0 ]
[3 2 1
3 2 3
3 6 7 ][ x
y
z ]= [0
0
0 ]
Now reduce the matrix into row echelon form as
[a . b
0 .
0 0 c ]
[ 3 2 1
3 2 3
3 6 7 ] : [ 3 2 1
0 8 8
0 0 0 ] 35
Document Page
Now reduce the matrix into reduced row echelon form as
[1 . b
0 .
0 0 1 ]
[ 3 2 1
0 8 8
0 0 0 ] :
[ 1 0 1
3
0 1 1
0 0 0 ]
Hence,
[ 1 0 1
3
0 1 1
0 0 0 ] [ x
y
z ]= [ 0
0
0 ]
x ( 1
3 ) z =0 ,x= 1
3 z
yz =0 ¿ y=z
Now,
[ x
y
z ]=
[ 1
3 z
z
z ]
Where, z 0
Let z=1
hence ,
36

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Eigenvector for λ=6 is
[ 1
3
1
1 ]
Therefore, the eigenvectors are [ 2
1
0 ] , [ 1
0
1 ] ,
[ 1
3
1
1 ]
(c) Condition B=P1 A P
Matrix P=?
Matrix A = [3 2 1
3 8 3
3 6 1 ]
P matrix would be determined based on the eigenvectors of matrix A.
P=
[2 1 1
3
1 0 1
0 1 1 ]
Now for Matrix B:
P1=
[ 2 1 1
3
1 0 1
0 1 1 ]
1
¿
[2 1 1
3
1 0 1
0 1 1

1 0 0
0 1 0
0 0 1 ]
Now reduce matrix to row echelon form
37
Document Page
[a . b
0 .
0 0 c ]
R 2 R 2+( 1
2 ) R 1
[2 1 1
3
0 1
2
7
6
0 1 1

1 0 0
1
2 1 0
0 0 1 ]
R 2 R 3
[ 2 1 1
3
0 1 1
0 1
2
7
6

1 0 0
0 0 1
1
2 1 0 ]
R 3 R 3 ( 1
2 )R 2
[ 2 1 1
3
0 1 1
0 0 2
3

1 0 0
0 0 1
1
2 1 1
2 ]
Reduce the matrix to reduced row echelon form
[1 . b
0 .
0 0 1 ]
38
Document Page
[ 1 0 0
0 1 0
0 0 1
:
3
4
1
2
3
4
3
4
3
2
7
4
3
4
3
2
3
4
]
P1=
[3
4
1
2
3
4
3
4
3
2
7
4
3
4
3
2
3
4
]
Now,
B=P1 A P
¿
[ 3
4
1
2
3
4
3
4
3
2
7
4
3
4
3
2
3
4
] . [ 3 2 1
3 8 3
3 6 1 ] .
[ 2 1 1
3
1 0 1
0 1 1 ]
¿
[3
2 1 3
2
3
2 3 7
2
9
2 9 9
2 ].
[2 1 1
3
1 0 1
0 1 1 ]
B= [ 2 0 0
0 2 0
0 0 6 ]
39

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Hence, the matrix B is [2 0 0
0 2 0
0 0 6 ] .
To determine whether the computed matrix is correct on not based on the eigenvalues
determined in part (a).
If det (B) = multiplication of the eigenvalues
Now,
Debt ( B ) =
|
2 0 0
0 2 0
0 0 6|=2 ( 12 ) 0 ( 0 ) +0 ( 0 ) =24
Multiplication of the eigenvalues (From part a) = 2 * 2 * 6 = 24
It is apparent that both the sides are same and therefore, the computed matrix B is correct.
40
Document Page
41
1 out of 42
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]