Drones Revolutionizing Agriculture
VerifiedAdded on 2020/05/11
|14
|4300
|257
AI Summary
This assignment delves into the transformative role of drone technology in modern agriculture. It examines how drones are being utilized for precision farming techniques, creating detailed maps of farmland, and applying pesticides or fertilizers with greater accuracy. The document also analyzes the potential benefits and drawbacks of using drones in agriculture, considering factors like efficiency, cost-effectiveness, environmental impact, and privacy concerns.
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
Running head: SOCIAL INFORMATICS 0
Social Informatics
Social Informatics
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
SOCIAL INFORMATICS 1
Table of Contents
Introduction............................................................................................................................. 3
Agriculture Industry................................................................................................................. 4
Drones...................................................................................................................................... 4
Usage of Drones in Agriculture Sector.....................................................................................4
Precision Agriculture............................................................................................................ 5
Crop Spraying....................................................................................................................... 5
Planting................................................................................................................................ 6
Health Assessment...............................................................................................................6
Irrigation...............................................................................................................................6
Insurance Claim Forensics....................................................................................................6
Benefit of Drone Technology in Agriculture Industry...............................................................6
Cost Advantage.................................................................................................................... 7
Save Time............................................................................................................................. 7
Ease of Use...........................................................................................................................7
Monitoring........................................................................................................................... 7
Analysis................................................................................................................................ 7
Needs Analysis......................................................................................................................... 7
Market..................................................................................................................................7
Stakeholders Requirements.................................................................................................8
Compliance Requirement.....................................................................................................8
Drawbacks of Drone Technology..............................................................................................8
Dangerous............................................................................................................................ 8
Strict Regulations................................................................................................................. 9
Mistake in Technology..........................................................................................................9
Table of Contents
Introduction............................................................................................................................. 3
Agriculture Industry................................................................................................................. 4
Drones...................................................................................................................................... 4
Usage of Drones in Agriculture Sector.....................................................................................4
Precision Agriculture............................................................................................................ 5
Crop Spraying....................................................................................................................... 5
Planting................................................................................................................................ 6
Health Assessment...............................................................................................................6
Irrigation...............................................................................................................................6
Insurance Claim Forensics....................................................................................................6
Benefit of Drone Technology in Agriculture Industry...............................................................6
Cost Advantage.................................................................................................................... 7
Save Time............................................................................................................................. 7
Ease of Use...........................................................................................................................7
Monitoring........................................................................................................................... 7
Analysis................................................................................................................................ 7
Needs Analysis......................................................................................................................... 7
Market..................................................................................................................................7
Stakeholders Requirements.................................................................................................8
Compliance Requirement.....................................................................................................8
Drawbacks of Drone Technology..............................................................................................8
Dangerous............................................................................................................................ 8
Strict Regulations................................................................................................................. 9
Mistake in Technology..........................................................................................................9
SOCIAL INFORMATICS 2
Cyber Attacks........................................................................................................................9
Recommendations................................................................................................................... 9
Conclusion.............................................................................................................................. 10
References..............................................................................................................................11
Cyber Attacks........................................................................................................................9
Recommendations................................................................................................................... 9
Conclusion.............................................................................................................................. 10
References..............................................................................................................................11
SOCIAL INFORMATICS 3
Introduction
Modern technology plays a prominent role in the development of agricultural industry;
farmers are using the latest innovations to improve agrarian activities. Current farmers'
usage the newest machinery, transport services, cooling facility, and another modern
method of irrigation to grow crops through advanced technology. Many modern farmers are
using drones to perform various agricultural activities. Drones are also known as Unmanned
Aerial Vehicles (UAV) or Remotely Piloted Aerial Systems (RPAS). There are several usages of
drones such as military purposes, agriculture work, aerial photography, shipping & delivery,
thermal sensor imagery, geographic mapping, safety incepts and much more. The role of
drones in agriculture sector is rapidly growing with time. In the agriculture industry, drones
are used for mapping, field analysis, planting, crop spraying, monitoring, irrigation, quality
assessment and much more. This report will focus on analysing the use of drones in the
agriculture industry. The report will discuss the impact of drones on the development of
agriculture sector. The report will also evaluate different drawbacks of using drones in
irrigation activity. Further, the report will analyse the improvement in service delivery due
to the latest technology and provide recommendations for better use of technology in the
agriculture sector.
Introduction
Modern technology plays a prominent role in the development of agricultural industry;
farmers are using the latest innovations to improve agrarian activities. Current farmers'
usage the newest machinery, transport services, cooling facility, and another modern
method of irrigation to grow crops through advanced technology. Many modern farmers are
using drones to perform various agricultural activities. Drones are also known as Unmanned
Aerial Vehicles (UAV) or Remotely Piloted Aerial Systems (RPAS). There are several usages of
drones such as military purposes, agriculture work, aerial photography, shipping & delivery,
thermal sensor imagery, geographic mapping, safety incepts and much more. The role of
drones in agriculture sector is rapidly growing with time. In the agriculture industry, drones
are used for mapping, field analysis, planting, crop spraying, monitoring, irrigation, quality
assessment and much more. This report will focus on analysing the use of drones in the
agriculture industry. The report will discuss the impact of drones on the development of
agriculture sector. The report will also evaluate different drawbacks of using drones in
irrigation activity. Further, the report will analyse the improvement in service delivery due
to the latest technology and provide recommendations for better use of technology in the
agriculture sector.
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
SOCIAL INFORMATICS 4
Agriculture Industry
Agriculture is the farming and breeding of plants, crops, animals, fungi, fiber and other
products which assist in sustaining and enhancing human lives. In recent years, the
popularity of American farmlands has dominated the industrial agriculture and majority of
chemically intensive crop production has developed after the World War II. Industrial
agriculture focus on growing a particular crop on a significantly large scale such as wheat,
corn, cotton, rice, and soybeans, it is also known as a monoculture. The rate of employment
in agriculture sector is continuously falling due to the implementation of modern technology
for the farming. In the United States of America, the percentage of the job has dropped
from 21 percent to less than 2 percent in between 1930 and 2010 (Invested Development
2013). In case of Australia, the employment rate in agriculture industry has fallen from 14
percent to 3 percent from 1901 to 2009 (Australia n.d.).
There have been a significant number of innovations in mobile/IT and energy sector which
has influenced the method of farming. For example, forming sensors, smart power systems,
proper irrigation gears, and agriculture software are readily available for the modern
farmers. The technology also has a negative impact on the agriculture sector, for example,
increasing rate of unemployment, environmental damage, and much more. In past few
decades, modern technology has improved the service delivery in the agriculture sector.
Farmers use the latest technology efficiently to improve the service delivery and
communication process in the agriculture sector. The governments are taking advantage of
most recent and mobile technology for connecting farmers with better sources and
providing them the alternate technique of service delivery (Ruiz-Garcia et al. 2009).
Drones
A drone is an aircraft, which is operated without a human pilot aboard, they also know an
unmanned aerial vehicle (UAV). The components of UAV include drone, a controller on the
ground, and communication between the two devices. A UAV can be operated with
different options such as a human-operated remote controller, or autonomously through a
computer system. In 1959, the US Air Force decided to use a drone in war zones because
they were concerned about losing pilots (Crutsinger, Short and Sollenberger 2016). After
that, the UAVs were used by various countries in different hostile situations. With the
popularity of mass usage of internet and smartphones, many companies started using
drones in diverse sectors such as agriculture, photography, data collection and much more.
In modern times, drones are being personally used by people for various usages such as
photography, video recording and other. The corporations are introducing cheaper and
capable UAV devices which can be used in different industries other than military
(Baumuller 2016).
Usage of Drones in Agriculture Sector
Drones or UAVs are commercially being used since the 1980s; nowadays, the role of drones
is increasing because the practical applications for UAVs in the agriculture sector are
proliferating. Due to robust investment and quickly developing technology, corporations are
Agriculture Industry
Agriculture is the farming and breeding of plants, crops, animals, fungi, fiber and other
products which assist in sustaining and enhancing human lives. In recent years, the
popularity of American farmlands has dominated the industrial agriculture and majority of
chemically intensive crop production has developed after the World War II. Industrial
agriculture focus on growing a particular crop on a significantly large scale such as wheat,
corn, cotton, rice, and soybeans, it is also known as a monoculture. The rate of employment
in agriculture sector is continuously falling due to the implementation of modern technology
for the farming. In the United States of America, the percentage of the job has dropped
from 21 percent to less than 2 percent in between 1930 and 2010 (Invested Development
2013). In case of Australia, the employment rate in agriculture industry has fallen from 14
percent to 3 percent from 1901 to 2009 (Australia n.d.).
There have been a significant number of innovations in mobile/IT and energy sector which
has influenced the method of farming. For example, forming sensors, smart power systems,
proper irrigation gears, and agriculture software are readily available for the modern
farmers. The technology also has a negative impact on the agriculture sector, for example,
increasing rate of unemployment, environmental damage, and much more. In past few
decades, modern technology has improved the service delivery in the agriculture sector.
Farmers use the latest technology efficiently to improve the service delivery and
communication process in the agriculture sector. The governments are taking advantage of
most recent and mobile technology for connecting farmers with better sources and
providing them the alternate technique of service delivery (Ruiz-Garcia et al. 2009).
Drones
A drone is an aircraft, which is operated without a human pilot aboard, they also know an
unmanned aerial vehicle (UAV). The components of UAV include drone, a controller on the
ground, and communication between the two devices. A UAV can be operated with
different options such as a human-operated remote controller, or autonomously through a
computer system. In 1959, the US Air Force decided to use a drone in war zones because
they were concerned about losing pilots (Crutsinger, Short and Sollenberger 2016). After
that, the UAVs were used by various countries in different hostile situations. With the
popularity of mass usage of internet and smartphones, many companies started using
drones in diverse sectors such as agriculture, photography, data collection and much more.
In modern times, drones are being personally used by people for various usages such as
photography, video recording and other. The corporations are introducing cheaper and
capable UAV devices which can be used in different industries other than military
(Baumuller 2016).
Usage of Drones in Agriculture Sector
Drones or UAVs are commercially being used since the 1980s; nowadays, the role of drones
is increasing because the practical applications for UAVs in the agriculture sector are
proliferating. Due to robust investment and quickly developing technology, corporations are
SOCIAL INFORMATICS 5
making new operations for drones in the agriculture sector. As per a research conducted by
PwC in recent drone business, the drone-powered solutions in industries are valued more
than $127 billion. As per the study, the drones assist farmers into addressing several
agricultural challenges (Mazur 2016). As per the experts, the world population will reach 9
billion by 2050 and the agrarian consumption will augment around 70 percent. Following
are few examples of UAVs usage in the agriculture industry, which assist the farmers in
fulfilling the growing demand for agrarian consumption (Logan 2017).
Precision Agriculture
It is an agriculture management model which is based on the detecting, assessing and
responding to variability in crops. Snow (2017) provided that Precision agriculture usage
various details, area-specific information to manage the production of crops such as water,
nitrogen, and insecticides. The drones provide agriculturalist and researchers ability locate a
precise position in fields to create maps which measure various things such as crop yield,
biological material, humidity levels, nitrogen level and much more. Following are the usage
of UAV in precision agriculture:
Crop Health Monitoring (Scouting): The drones can monitor yields with various
sensors, such as Normalised Difference Vegetative Index or near-infrared. This is the
primary way of UAVs used by the farmers in the agriculture sector. The popular
drones use for this purpose includes SenseFly eBee SQ or PrecisionHawk Lancaster 5,
which costs around $10,500 and $12,000 respectively (Meola 2017). Due to a recent
update in SenseFly’s eBee Ag, the monitoring area for drone observing has increased
significantly. It detects the information which human eye cannot see which benefit
farmers into improving their crop’s quality.
Irrigation Equipment Monitoring: Most of the large farmer’s usage many irrigation
pivots which are hard to keep track cause they spread throughout the fields. After
the crops gain certain height, it became difficult for farmers to inspect the nozzles
and sprinkles the water on irrigation equipment. The drones can be used by farmers
to avoid these issues in their fields (Grassi 2014).
Mid-Field Weed Identification: most of the UAVs use sensors such as NDVI which
applies image processing to make a weed map. The agriculturalists use such
information to recognise intensity weed propagation regions from healthy crops.
Variable-Rate Fertility: While determining nitrogen, phosphorus, and potassium in
the fields, experts believe that satellite ground imagery is more practical, along with
soil sampling. But, many drones such as Agribotix, uses NDVI sensors to provide
instant information regarding field quality which can be utilised for the
determination of the power of nutrients in fields (Thomasson 2015).
Cattle Herd Monitoring: Another use of a drone is monitoring of cattle from
overhead, it became easier for farmers to use UAV to herds monitoring. The drones
are especially more useful in the night because they can use night vision or thermal
cameras which are way better than human monitoring (Bloss 2014).
Crop Spraying
There are several drones designed by companies to use them in spraying liquid insecticides,
fertilizers, and herbicides over the fields. The example of spraying drones includes
ZEROTECH Guardian-Z10 and Yamaha RMAX. In Japan, the unmanned spray helicopters are
making new operations for drones in the agriculture sector. As per a research conducted by
PwC in recent drone business, the drone-powered solutions in industries are valued more
than $127 billion. As per the study, the drones assist farmers into addressing several
agricultural challenges (Mazur 2016). As per the experts, the world population will reach 9
billion by 2050 and the agrarian consumption will augment around 70 percent. Following
are few examples of UAVs usage in the agriculture industry, which assist the farmers in
fulfilling the growing demand for agrarian consumption (Logan 2017).
Precision Agriculture
It is an agriculture management model which is based on the detecting, assessing and
responding to variability in crops. Snow (2017) provided that Precision agriculture usage
various details, area-specific information to manage the production of crops such as water,
nitrogen, and insecticides. The drones provide agriculturalist and researchers ability locate a
precise position in fields to create maps which measure various things such as crop yield,
biological material, humidity levels, nitrogen level and much more. Following are the usage
of UAV in precision agriculture:
Crop Health Monitoring (Scouting): The drones can monitor yields with various
sensors, such as Normalised Difference Vegetative Index or near-infrared. This is the
primary way of UAVs used by the farmers in the agriculture sector. The popular
drones use for this purpose includes SenseFly eBee SQ or PrecisionHawk Lancaster 5,
which costs around $10,500 and $12,000 respectively (Meola 2017). Due to a recent
update in SenseFly’s eBee Ag, the monitoring area for drone observing has increased
significantly. It detects the information which human eye cannot see which benefit
farmers into improving their crop’s quality.
Irrigation Equipment Monitoring: Most of the large farmer’s usage many irrigation
pivots which are hard to keep track cause they spread throughout the fields. After
the crops gain certain height, it became difficult for farmers to inspect the nozzles
and sprinkles the water on irrigation equipment. The drones can be used by farmers
to avoid these issues in their fields (Grassi 2014).
Mid-Field Weed Identification: most of the UAVs use sensors such as NDVI which
applies image processing to make a weed map. The agriculturalists use such
information to recognise intensity weed propagation regions from healthy crops.
Variable-Rate Fertility: While determining nitrogen, phosphorus, and potassium in
the fields, experts believe that satellite ground imagery is more practical, along with
soil sampling. But, many drones such as Agribotix, uses NDVI sensors to provide
instant information regarding field quality which can be utilised for the
determination of the power of nutrients in fields (Thomasson 2015).
Cattle Herd Monitoring: Another use of a drone is monitoring of cattle from
overhead, it became easier for farmers to use UAV to herds monitoring. The drones
are especially more useful in the night because they can use night vision or thermal
cameras which are way better than human monitoring (Bloss 2014).
Crop Spraying
There are several drones designed by companies to use them in spraying liquid insecticides,
fertilizers, and herbicides over the fields. The example of spraying drones includes
ZEROTECH Guardian-Z10 and Yamaha RMAX. In Japan, the unmanned spray helicopters are
SOCIAL INFORMATICS 6
being used for years, but in case of the United States, the government recently permitted
RMAX (Doherty, Heintz and Kvarnstrom 2013). According to AUVSI, a non-profit
organisation for drone development, the use of UAVs in spraying pesticides and fertilizers is
safer and efficient way of managing crops.
Planting
Many entrepreneurs have formed a drone-planting system which can achieve an uptake
rate of 75 percent, and they can reduce the planting expenses by 85 percent. These drones
can shoot pods directly into the ground which contain seeds and plant nutritious. According
to the research of Grossman (2017), many companies such as BioCarbon Engineering can
speed up the process of planting by using drones instead of human beings. BioCarbon has
claimed that their drones can plant 100,000 trees in a single day. They have performed
several tests of planning trees in abandoned mines of England and Australia which has been
successful; with decent success, the drones will be able to plant 1 billion trees in a year.
Health Assessment
For farmers, it is significantly necessary to evaluate the quality and health of their crops for
spotting bacterial or fungal infections on the plants. The farmers can use regular and near-
infrared light to scan their plant, which is available in new drones. The drones also provide
aerial views of the field which allow farmers to measure more yields in less time. According
to George et al. (2013), the UAV can recognise which plants are reflecting the various
amount of green and NIR light. The data from such drones can be utilising in producing a
multispectral image of the fields which makes it easier to track changes in crops and provide
information about their health. Farmers can use this information in a speedy response
which can protect the entire plantation. The farmers will be able to provide remedies in the
field as soon as the disease in crops is revealed. In case the farmer is not able to protect the
field, the data collected through drone can be efficiently used at the time insurance claim.
Irrigation
There are several drones available in the market with hyperspectral, multispectral and
thermal sensors; this UAV can recognise the part of the file which is dry and requires
development. As per Handwerk (2013), this information can be used by farmers to improve
the quality of their crops by adequately providing them needed nutrition. Furthermore,
once the plant starts growing, the UAVs can calculate the vegetation index, which includes
information regarding relative density and health of the plant. It also provides details
regarding heat signature, the energy produced by plant and heat created in the field.
Insurance Claim Forensics
Most of the modern insurance corporations use 3D drone imaginary to measure the
environment. The companies collect images from various perspectives and measure them
calculate the impact of the environment. As per Barta (2016), this information can be
beneficial for the insurance companies at the time of settlement of insurance claim.
being used for years, but in case of the United States, the government recently permitted
RMAX (Doherty, Heintz and Kvarnstrom 2013). According to AUVSI, a non-profit
organisation for drone development, the use of UAVs in spraying pesticides and fertilizers is
safer and efficient way of managing crops.
Planting
Many entrepreneurs have formed a drone-planting system which can achieve an uptake
rate of 75 percent, and they can reduce the planting expenses by 85 percent. These drones
can shoot pods directly into the ground which contain seeds and plant nutritious. According
to the research of Grossman (2017), many companies such as BioCarbon Engineering can
speed up the process of planting by using drones instead of human beings. BioCarbon has
claimed that their drones can plant 100,000 trees in a single day. They have performed
several tests of planning trees in abandoned mines of England and Australia which has been
successful; with decent success, the drones will be able to plant 1 billion trees in a year.
Health Assessment
For farmers, it is significantly necessary to evaluate the quality and health of their crops for
spotting bacterial or fungal infections on the plants. The farmers can use regular and near-
infrared light to scan their plant, which is available in new drones. The drones also provide
aerial views of the field which allow farmers to measure more yields in less time. According
to George et al. (2013), the UAV can recognise which plants are reflecting the various
amount of green and NIR light. The data from such drones can be utilising in producing a
multispectral image of the fields which makes it easier to track changes in crops and provide
information about their health. Farmers can use this information in a speedy response
which can protect the entire plantation. The farmers will be able to provide remedies in the
field as soon as the disease in crops is revealed. In case the farmer is not able to protect the
field, the data collected through drone can be efficiently used at the time insurance claim.
Irrigation
There are several drones available in the market with hyperspectral, multispectral and
thermal sensors; this UAV can recognise the part of the file which is dry and requires
development. As per Handwerk (2013), this information can be used by farmers to improve
the quality of their crops by adequately providing them needed nutrition. Furthermore,
once the plant starts growing, the UAVs can calculate the vegetation index, which includes
information regarding relative density and health of the plant. It also provides details
regarding heat signature, the energy produced by plant and heat created in the field.
Insurance Claim Forensics
Most of the modern insurance corporations use 3D drone imaginary to measure the
environment. The companies collect images from various perspectives and measure them
calculate the impact of the environment. As per Barta (2016), this information can be
beneficial for the insurance companies at the time of settlement of insurance claim.
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
SOCIAL INFORMATICS 7
Benefit of Drone Technology in Agriculture Industry
Due to the modernisation of technology, drones provide various advantages to current
farmers. Following are few examples of benefit g UAV in the agriculture industry.
Cost Advantage
Taking an aerial image of field using a drone cost an average of $2 per acre; farmers can
easily pay this amount for the data provided by drone images (Siebert and Teizer 2014). The
prices of drones are reducing as well with the introduction of personal drones such as DJI
Spark.
Save Time
One of the primary benefits of UAV is that it is easy to use and it saves a significant amount
of time. A drone can scout the crop fields more rapidly and efficiently than compared with
tractors. The UAV also allow farmers to gain critical information at a considerably less
amount of time, such as nutrition rate, dry areas or weed growth.
Ease of Use
With the introduction of personal use drones, the use of UAV has become significantly
simple. Farmers can learn to operate drones themselves which reducing their time and cost.
Monitoring
The farmers can use drones for monitoring their fields; the UAV provide an overhead aerial
view which covers a large area of ground in a single viewing. The growers can monitor
cattle, weed growth, a disease in the crop, inventories, the requirement of water and much
more. This information assists the farmers in growing healthy and better quality crops.
Analysis
Modern drones contain various sensors such as thermal, hyperspectral, and multispectral,
which provide high-quality detail to farmers which cannot be accessed through naked eyes.
This information benefits growers by improving the quality of their crops or efficiently
claims insurance in case of failure.
Needs Analysis
Market
As per the article published by Successful Farming in 2016, in the beginning, farmers
hesitated regarding drones (Bedord 2016). The drones provide various services to farmers
who cannot be accessible to ground level. Slowly but surely, drone technology is
revolutionising the agriculture industry by offering multiple benefits to growers. The
research of PwC provided that the drone-powered solutions in industries are valued more
than $127 billion. The study conducted by MarketInsightsReports provided that the
agricultural drone market might be valued around $4.2 billion by 2022 (Reagan 2017). As
per the statistics provided by Successful Farming:
Benefit of Drone Technology in Agriculture Industry
Due to the modernisation of technology, drones provide various advantages to current
farmers. Following are few examples of benefit g UAV in the agriculture industry.
Cost Advantage
Taking an aerial image of field using a drone cost an average of $2 per acre; farmers can
easily pay this amount for the data provided by drone images (Siebert and Teizer 2014). The
prices of drones are reducing as well with the introduction of personal drones such as DJI
Spark.
Save Time
One of the primary benefits of UAV is that it is easy to use and it saves a significant amount
of time. A drone can scout the crop fields more rapidly and efficiently than compared with
tractors. The UAV also allow farmers to gain critical information at a considerably less
amount of time, such as nutrition rate, dry areas or weed growth.
Ease of Use
With the introduction of personal use drones, the use of UAV has become significantly
simple. Farmers can learn to operate drones themselves which reducing their time and cost.
Monitoring
The farmers can use drones for monitoring their fields; the UAV provide an overhead aerial
view which covers a large area of ground in a single viewing. The growers can monitor
cattle, weed growth, a disease in the crop, inventories, the requirement of water and much
more. This information assists the farmers in growing healthy and better quality crops.
Analysis
Modern drones contain various sensors such as thermal, hyperspectral, and multispectral,
which provide high-quality detail to farmers which cannot be accessed through naked eyes.
This information benefits growers by improving the quality of their crops or efficiently
claims insurance in case of failure.
Needs Analysis
Market
As per the article published by Successful Farming in 2016, in the beginning, farmers
hesitated regarding drones (Bedord 2016). The drones provide various services to farmers
who cannot be accessible to ground level. Slowly but surely, drone technology is
revolutionising the agriculture industry by offering multiple benefits to growers. The
research of PwC provided that the drone-powered solutions in industries are valued more
than $127 billion. The study conducted by MarketInsightsReports provided that the
agricultural drone market might be valued around $4.2 billion by 2022 (Reagan 2017). As
per the statistics provided by Successful Farming:
SOCIAL INFORMATICS 8
9 percent of own industry UAV
3 percent will buy in next 12 months
17 percent of industry will purchase in next 1 to 2 years
33 percent will buy after two or more years
38 percent did not want to buy a drone for agriculture purposes
In 2015, the drone industry sees a growth because the Federal Aviation Administration
provided new exemptions to companies for operating drones in the United States of
America. In 2016, more than 2.2 million drones unite were sold worldwide, and profit raised
36 percent to $4.5 billion.
Stakeholders Requirements
Modern corporations have industrialised most of the farming sector; the companies grow
the single crop in excessive quantity to fulfill the requirement of the public. The drone
technology benefits the growers by providing various services such as analysis of fields, cost-
benefit, ease of use, monitoring of crops and much more (Freeman and Freeland 2014).
Following are multiple stakeholders’ perspectives for drone technology requirement:
Farmer: The critical stakeholder is the grower who cultivates the crops. The drone
technology is a requirement for farmers due to its various benefits such as high-
quality analysis of field at low cost, easy to use technology, monitoring different
aspects of the area, saving time and much more.
Shareholders: The shareholders of the agriculture firms are benefited from drone
technology because it augments the revenue of the company.
Environment: Drones are small in size and does not require high power machinery to
work which did not increase pollution in the atmosphere.
Government: To properly use a drone, various approvals are necessary. But, more
and more countries governments are accepting the drone regulations such as new
exemptions provided by Federal Aviation Administration.
Customers: Drones benefit farmers by increasing the quality and reducing the cost of
crops. The customers are can easily get nutritious crops at lower prices.
Compliance Requirement
Most of the governments have implemented strict regulation over drone usage to protect
the public from unwanted injury. In the United States, the Federal Aviation Administration
(FAA) requires people to register the drone which is weight more than 8 ounces (Bennett
2014). In Australia, Civil Aviation Safety Regulations provide the provisions regarding drone
usage. In order to use a drone weight more than 2 kilograms for commercial purposes in
Australia, users are required to get an RPA operator’s certificate (ReOC) (Kollmorgen 2017).
The regulations regarding agriculture use of drone are a little bit more flexible which
encourage the farmers. The flexible rule is required to be implemented by the government
to increase the usage of drones in the agriculture sector.
9 percent of own industry UAV
3 percent will buy in next 12 months
17 percent of industry will purchase in next 1 to 2 years
33 percent will buy after two or more years
38 percent did not want to buy a drone for agriculture purposes
In 2015, the drone industry sees a growth because the Federal Aviation Administration
provided new exemptions to companies for operating drones in the United States of
America. In 2016, more than 2.2 million drones unite were sold worldwide, and profit raised
36 percent to $4.5 billion.
Stakeholders Requirements
Modern corporations have industrialised most of the farming sector; the companies grow
the single crop in excessive quantity to fulfill the requirement of the public. The drone
technology benefits the growers by providing various services such as analysis of fields, cost-
benefit, ease of use, monitoring of crops and much more (Freeman and Freeland 2014).
Following are multiple stakeholders’ perspectives for drone technology requirement:
Farmer: The critical stakeholder is the grower who cultivates the crops. The drone
technology is a requirement for farmers due to its various benefits such as high-
quality analysis of field at low cost, easy to use technology, monitoring different
aspects of the area, saving time and much more.
Shareholders: The shareholders of the agriculture firms are benefited from drone
technology because it augments the revenue of the company.
Environment: Drones are small in size and does not require high power machinery to
work which did not increase pollution in the atmosphere.
Government: To properly use a drone, various approvals are necessary. But, more
and more countries governments are accepting the drone regulations such as new
exemptions provided by Federal Aviation Administration.
Customers: Drones benefit farmers by increasing the quality and reducing the cost of
crops. The customers are can easily get nutritious crops at lower prices.
Compliance Requirement
Most of the governments have implemented strict regulation over drone usage to protect
the public from unwanted injury. In the United States, the Federal Aviation Administration
(FAA) requires people to register the drone which is weight more than 8 ounces (Bennett
2014). In Australia, Civil Aviation Safety Regulations provide the provisions regarding drone
usage. In order to use a drone weight more than 2 kilograms for commercial purposes in
Australia, users are required to get an RPA operator’s certificate (ReOC) (Kollmorgen 2017).
The regulations regarding agriculture use of drone are a little bit more flexible which
encourage the farmers. The flexible rule is required to be implemented by the government
to increase the usage of drones in the agriculture sector.
SOCIAL INFORMATICS 9
Drawbacks of Drone Technology
Dangerous
The advancement in technology has increased security in the usage of drones, but the
technology is not perfect. There have been various cases with shows that drones can be
dangerous for the safety of public or property (Omand, Wheeler and Schulte 2014).
Strict Regulations
Most of the government has rigid regulations regarding usage of drone which require
people to get a license for drone usage. These rules limit the use of a drone in commercial
proposes, and it also discourages people from using drone technology for agriculture
purposes.
Mistake in Technology
Although, the drones can determine high-quality information is less time but just like any
other technology it can be disrupted due to several reasons. The quality of data collected by
UAV can be reduced due to factors such as low WIFI speed, adverse environmental
conditions, and failure of parts.
Cyber Attacks
The drone uses an internet connection to share information with the user which means it
can be hacked. The cybercriminals can hack the drone and use them to their advantage
which can be dangerous for the safety of the public (Hartmann and Steup 2013).
Recommendations
Following are few suggestions which can improve the process of drone use in agriculture
sector:
The government should establish more flexible regulations regarding drone uses in
the agriculture sector. The rules should encourage the small farmer to use drones in
their fields which can benefit them by reducing cost and improving the quality of
their crops.
The companies should manufacture cheap UAV for agriculture purposes which can
be bought by small growers. These drones will increase the usage of UAV in the
agriculture sector.
The government should establish drone training programs for farmers to teach them
usage of UAV. These programs will encourage the growers to use drones in their
activities which will eventually reduce their cost and improve the quality of crops.
Better security regulation can be implemented to ensure the security in the
connection between drone and controller, to avoid cybercriminals from hacking the
UAVs.
Drawbacks of Drone Technology
Dangerous
The advancement in technology has increased security in the usage of drones, but the
technology is not perfect. There have been various cases with shows that drones can be
dangerous for the safety of public or property (Omand, Wheeler and Schulte 2014).
Strict Regulations
Most of the government has rigid regulations regarding usage of drone which require
people to get a license for drone usage. These rules limit the use of a drone in commercial
proposes, and it also discourages people from using drone technology for agriculture
purposes.
Mistake in Technology
Although, the drones can determine high-quality information is less time but just like any
other technology it can be disrupted due to several reasons. The quality of data collected by
UAV can be reduced due to factors such as low WIFI speed, adverse environmental
conditions, and failure of parts.
Cyber Attacks
The drone uses an internet connection to share information with the user which means it
can be hacked. The cybercriminals can hack the drone and use them to their advantage
which can be dangerous for the safety of the public (Hartmann and Steup 2013).
Recommendations
Following are few suggestions which can improve the process of drone use in agriculture
sector:
The government should establish more flexible regulations regarding drone uses in
the agriculture sector. The rules should encourage the small farmer to use drones in
their fields which can benefit them by reducing cost and improving the quality of
their crops.
The companies should manufacture cheap UAV for agriculture purposes which can
be bought by small growers. These drones will increase the usage of UAV in the
agriculture sector.
The government should establish drone training programs for farmers to teach them
usage of UAV. These programs will encourage the growers to use drones in their
activities which will eventually reduce their cost and improve the quality of crops.
Better security regulation can be implemented to ensure the security in the
connection between drone and controller, to avoid cybercriminals from hacking the
UAVs.
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
SOCIAL INFORMATICS 10
Conclusion
In conclusion, many of the technological advancements have assisted in augmenting the
growth of agriculture industry. The use of drones for various farming purposes has become
popular in past few years. Many growers use UAVs for multiple purposes such as spraying
fertilisers, planting seeds, irrigation, precision agriculture and health analysis of crops. The
benefit of using drones include the high quality of imagery, lower cost usage, saving time,
easy to use and better monitoring of fields. With various benefits, there are several
shortcomings of drones as well such as vulnerable to hacking, strict government regulations,
technological defaults, and dangerous for public safety. The government can implement
flexible rules and drone training programs to promote the usage of drone which can
improve the agriculture process.
Conclusion
In conclusion, many of the technological advancements have assisted in augmenting the
growth of agriculture industry. The use of drones for various farming purposes has become
popular in past few years. Many growers use UAVs for multiple purposes such as spraying
fertilisers, planting seeds, irrigation, precision agriculture and health analysis of crops. The
benefit of using drones include the high quality of imagery, lower cost usage, saving time,
easy to use and better monitoring of fields. With various benefits, there are several
shortcomings of drones as well such as vulnerable to hacking, strict government regulations,
technological defaults, and dangerous for public safety. The government can implement
flexible rules and drone training programs to promote the usage of drone which can
improve the agriculture process.
SOCIAL INFORMATICS 11
References
Australia., n.d. Australian farming and agriculture – grazing and cropping. Australian
Government. Retrieved from < http://www.australia.gov.au/about-australia/australian-
story/austn-farming-and-agriculture >
Barta, L.M., 2016. Rate Me: Risk Assessment Drones and the Resurrection of Discriminatory
Insurance Practices. Wash. & Lee L. Rev., 73, p.1549.
Baumüller, H., 2016. Agricultural service delivery through mobile phones: local innovation
and technological opportunities in Kenya. In Technological and Institutional Innovations for
Marginalized Smallholders in Agricultural Development (pp. 143-162). Springer International
Publishing. Retrieved from < https://link.springer.com/chapter/10.1007/978-3-319-25718-
1_9 >
Bedord, L., 2016. CAN UAVS REALLY BE GAME-CHANGERS FOR AGRICULTURE?. Successful
Farming. Retrieved from < http://www.agriculture.com/technology/robotics/can-uavs-
really-be-game-changers-for-agriculture >
Bennett, W.C., 2014. Civilian drones, privacy, and the federal-state balance. Center for
Technology Innovation at Brookings.
Bloss, R., 2014. Robot innovation brings to agriculture efficiency, safety, labor savings and
accuracy by plowing, milking, harvesting, crop tending/picking and monitoring. Industrial
Robot: An International Journal, 41(6), pp.493-499.
Crutsinger, G.M., Short, J. and Sollenberger, R., 2016. The future of UAVs in ecology: an
insider perspective from the Silicon Valley drone industry.
Doherty, P., Heintz, F. and Kvarnström, J., 2013. High-level mission specification and
planning for collaborative unmanned aircraft systems using delegation. Unmanned
Systems, 1(01), pp.75-119.
Freeman, P.K. and Freeland, R.S., 2014. Politics & technology: US polices restricting
unmanned aerial systems in agriculture. Food Policy, 49, pp.302-311.
References
Australia., n.d. Australian farming and agriculture – grazing and cropping. Australian
Government. Retrieved from < http://www.australia.gov.au/about-australia/australian-
story/austn-farming-and-agriculture >
Barta, L.M., 2016. Rate Me: Risk Assessment Drones and the Resurrection of Discriminatory
Insurance Practices. Wash. & Lee L. Rev., 73, p.1549.
Baumüller, H., 2016. Agricultural service delivery through mobile phones: local innovation
and technological opportunities in Kenya. In Technological and Institutional Innovations for
Marginalized Smallholders in Agricultural Development (pp. 143-162). Springer International
Publishing. Retrieved from < https://link.springer.com/chapter/10.1007/978-3-319-25718-
1_9 >
Bedord, L., 2016. CAN UAVS REALLY BE GAME-CHANGERS FOR AGRICULTURE?. Successful
Farming. Retrieved from < http://www.agriculture.com/technology/robotics/can-uavs-
really-be-game-changers-for-agriculture >
Bennett, W.C., 2014. Civilian drones, privacy, and the federal-state balance. Center for
Technology Innovation at Brookings.
Bloss, R., 2014. Robot innovation brings to agriculture efficiency, safety, labor savings and
accuracy by plowing, milking, harvesting, crop tending/picking and monitoring. Industrial
Robot: An International Journal, 41(6), pp.493-499.
Crutsinger, G.M., Short, J. and Sollenberger, R., 2016. The future of UAVs in ecology: an
insider perspective from the Silicon Valley drone industry.
Doherty, P., Heintz, F. and Kvarnström, J., 2013. High-level mission specification and
planning for collaborative unmanned aircraft systems using delegation. Unmanned
Systems, 1(01), pp.75-119.
Freeman, P.K. and Freeland, R.S., 2014. Politics & technology: US polices restricting
unmanned aerial systems in agriculture. Food Policy, 49, pp.302-311.
SOCIAL INFORMATICS 12
George, E.A., Tiwari, G., Yadav, R.N., Peters, E. and Sadana, S., 2013, August. UAV systems
for parameter identification in agriculture. In Global Humanitarian Technology Conference:
South Asia Satellite (GHTC-SAS), 2013 IEEE (pp. 270-273). IEEE.
Grassi, M., 2014. 5 Actual Uses For Drones In Precision Agriculture Today. Drone Life.
Retrieved from < https://dronelife.com/2014/12/30/5-actual-uses-drones-precision-
agriculture-today/ >
Grossman, D., 2017. How Drones Could Be Able to Plant a Billion Trees Per Year. Popular
Mechanics. Retrieved from <
http://www.popularmechanics.com/technology/robots/a27743/company-wants-drones-to-
plant-a-billion-trees/ >
Handwerk, B., 2013. 5 Surprising Drone Uses (Besides Pizza Delivery). National Geographic.
Retrieved from < http://news.nationalgeographic.com/news/2013/06/130606-drone-uav-
surveillance-unmanned-domicopter-flight-civilian-helicopter/ >
Hartmann, K. and Steup, C., 2013, June. The vulnerability of UAVs to cyber attacks-An
approach to the risk assessment. In Cyber Conflict (CyCon), 2013 5th International
Conference on (pp. 1-23). IEEE.
Invested Development., 2013. The Impact of Technology in Agriculture. Invested
Development. Retrieved from < http://investeddevelopment.com/2013/06/the-impact-of-
technology-in-agriculture/ >
Kollmorgen, A., 2017. Straighten up and fly right. Choice. Retrieved from <
https://www.choice.com.au/electronics-and-technology/gadgets/tech-gadgets/articles/
drones-and-privacy-rights >
Logan, T., 2017. Drone mapping in agriculture on the rise. ABC. Retrieved From <
http://www.abc.net.au/news/rural/2017-03-07/drone-use-increasing-for-ndvi-mapping/
8328456 >
Mazur, M., 2016. Six Ways Drones Are Revolutionizing Agriculture. Technology Review.
Retrieved from < https://www.technologyreview.com/s/601935/six-ways-drones-are-
revolutionizing-agriculture/ >
George, E.A., Tiwari, G., Yadav, R.N., Peters, E. and Sadana, S., 2013, August. UAV systems
for parameter identification in agriculture. In Global Humanitarian Technology Conference:
South Asia Satellite (GHTC-SAS), 2013 IEEE (pp. 270-273). IEEE.
Grassi, M., 2014. 5 Actual Uses For Drones In Precision Agriculture Today. Drone Life.
Retrieved from < https://dronelife.com/2014/12/30/5-actual-uses-drones-precision-
agriculture-today/ >
Grossman, D., 2017. How Drones Could Be Able to Plant a Billion Trees Per Year. Popular
Mechanics. Retrieved from <
http://www.popularmechanics.com/technology/robots/a27743/company-wants-drones-to-
plant-a-billion-trees/ >
Handwerk, B., 2013. 5 Surprising Drone Uses (Besides Pizza Delivery). National Geographic.
Retrieved from < http://news.nationalgeographic.com/news/2013/06/130606-drone-uav-
surveillance-unmanned-domicopter-flight-civilian-helicopter/ >
Hartmann, K. and Steup, C., 2013, June. The vulnerability of UAVs to cyber attacks-An
approach to the risk assessment. In Cyber Conflict (CyCon), 2013 5th International
Conference on (pp. 1-23). IEEE.
Invested Development., 2013. The Impact of Technology in Agriculture. Invested
Development. Retrieved from < http://investeddevelopment.com/2013/06/the-impact-of-
technology-in-agriculture/ >
Kollmorgen, A., 2017. Straighten up and fly right. Choice. Retrieved from <
https://www.choice.com.au/electronics-and-technology/gadgets/tech-gadgets/articles/
drones-and-privacy-rights >
Logan, T., 2017. Drone mapping in agriculture on the rise. ABC. Retrieved From <
http://www.abc.net.au/news/rural/2017-03-07/drone-use-increasing-for-ndvi-mapping/
8328456 >
Mazur, M., 2016. Six Ways Drones Are Revolutionizing Agriculture. Technology Review.
Retrieved from < https://www.technologyreview.com/s/601935/six-ways-drones-are-
revolutionizing-agriculture/ >
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
SOCIAL INFORMATICS 13
Meola, A., 2017. Drone market shows positive outlook with strong industry growth and
trends. Business Insider. Retrieved from < http://www.businessinsider.com/drone-industry-
analysis-market-trends-growth-forecasts-2017-7?IR=T >
Meola, A., 2017. Exploring agricultural drones: The future of farming is precision agriculture,
mapping, and spraying. Business Insider. Retrieved from <
http://www.businessinsider.com/farming-drones-precision-agriculture-mapping-spraying-
2017-8?IR=T >
Omand, D., Wheeler, N. and Schulte, P., 2014. The security impact of drones: Challenges and
opportunities for the UK. [PDF file]. Birmingham Policy Commission. Birmingham: University
of Birmingham. Retrieved from <
https://www.birmingham.ac.uk/Documents/research/policycommission/remote-warfare/
final-report-october-2014.pdf >
Reagan, J., 2017. Report: Agriculture Drone Market May Exceed $4 billion. Drone Life.
Retrieved from < https://dronelife.com/2017/10/05/report-agriculture-drone-market-may-
exceed-4-billion/ >
Ruiz-Garcia, L., Lunadei, L., Barreiro, P. and Robla, I., 2009. A review of wireless sensor
technologies and applications in agriculture and food industry: state of the art and current
trends. sensors, 9(6), pp.4728-4750.
Siebert, S. and Teizer, J., 2014. Mobile 3D mapping for surveying earthwork projects using
an Unmanned Aerial Vehicle (UAV) system. Automation in Construction, 41, pp.1-14.
Snow, C., 2017. The Truth about Drones in Precision Agriculture. [PDF file]. Skylogic
Research. Retrieved from <
http://www.angeleyesuav.com/wp-content/uploads/2016/08/TheTruthAboutDrones_ag.pd
f >
Thomasson, A., 2015. Optimising with drones, robots, GPS: future farming. SABI Magazine-
Tydskrif, 7(6), pp.42-43.
Meola, A., 2017. Drone market shows positive outlook with strong industry growth and
trends. Business Insider. Retrieved from < http://www.businessinsider.com/drone-industry-
analysis-market-trends-growth-forecasts-2017-7?IR=T >
Meola, A., 2017. Exploring agricultural drones: The future of farming is precision agriculture,
mapping, and spraying. Business Insider. Retrieved from <
http://www.businessinsider.com/farming-drones-precision-agriculture-mapping-spraying-
2017-8?IR=T >
Omand, D., Wheeler, N. and Schulte, P., 2014. The security impact of drones: Challenges and
opportunities for the UK. [PDF file]. Birmingham Policy Commission. Birmingham: University
of Birmingham. Retrieved from <
https://www.birmingham.ac.uk/Documents/research/policycommission/remote-warfare/
final-report-october-2014.pdf >
Reagan, J., 2017. Report: Agriculture Drone Market May Exceed $4 billion. Drone Life.
Retrieved from < https://dronelife.com/2017/10/05/report-agriculture-drone-market-may-
exceed-4-billion/ >
Ruiz-Garcia, L., Lunadei, L., Barreiro, P. and Robla, I., 2009. A review of wireless sensor
technologies and applications in agriculture and food industry: state of the art and current
trends. sensors, 9(6), pp.4728-4750.
Siebert, S. and Teizer, J., 2014. Mobile 3D mapping for surveying earthwork projects using
an Unmanned Aerial Vehicle (UAV) system. Automation in Construction, 41, pp.1-14.
Snow, C., 2017. The Truth about Drones in Precision Agriculture. [PDF file]. Skylogic
Research. Retrieved from <
http://www.angeleyesuav.com/wp-content/uploads/2016/08/TheTruthAboutDrones_ag.pd
f >
Thomasson, A., 2015. Optimising with drones, robots, GPS: future farming. SABI Magazine-
Tydskrif, 7(6), pp.42-43.
1 out of 14
Related Documents
Your All-in-One AI-Powered Toolkit for Academic Success.
+13062052269
info@desklib.com
Available 24*7 on WhatsApp / Email
Unlock your academic potential
© 2024 | Zucol Services PVT LTD | All rights reserved.