Solution Q1a). { ( ) 2. Fy(y) =. −y , y >0 2 0 , otherw

Verified

Added on  2023/04/21

|5
|485
|103
AI Summary

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Solution
Q1a)
Fy(y) = { yexp ( y2
2 ) , y >0
0 , otherwise
P(Y > y) =
y

f y(y)
=
y

yexp ( y2
2 ) dy
Substitute
u = y2
2 dx=1
y du
= eu du
au du= au
ln ( a ) , with a = e
= eu
Solve integrals
= eu du=eu
u = y2
2 , then e
y2
2 +c
[
e
y2
2 +c ]y
= e
2
2 (e
y2
2 )
= 0 + e
y2
2
= e
y2
2

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
b)
P (0 < y< 1) =
0
1
f y(y)
=
0
1
yexp ( y2
2 ) dy
[
e
y2
2 +c ]01
= e
12
2 (e
02
2 )
-1.64872 + 1
= -0.64872
Q2a)
P(x m¿=0.5=¿
0
m
λ
2 exp (λx)dx
0.5 => [e λx]0m
m = ln ( 0.5 )
λ
b)
P(0.25 < x< 0.75) =
0.25
0.75
f x(x)dx
=
0.25
0.75
8
( x+2 ) 3 dx
Ley u = x + 2 dx=du
Document Page
= 8
0.25
0.75
1
u3 du
Solving

0.25
0.75
1
u3 du

0.25
0.75
u2 du = un +1
n+1 with n=3
= 1
2u2
= 8 1
u3 du=4
u2
Substitute u = x + 2
= 4
( x+2 )2
= [ 4
( x+2 )2 +C ]0.250.75
= 4
( 0.75+2 ) 2 4
( 0.75+ 2 ) 2
= -0.5289 + 0.79012
= 0.26122
Q3a)
P(Z z ¿=
0

l og(1 x)dx
Let, u = 1-x dx=du
log (u)du
Integrate by parts, fg ' =fgf ' g
Document Page
f = log(u), g’ = 1
f’ = 1/u, g= u
= ulog(u) - 1 du
Applying constant rule
= 1 du=u
Solve integration
ulog(u) - 1 du
= ulog(u) = u
Substituting
u = 1 – x
x + log(1-x)(1-x)-1
[x + log(1-x)(1-x)-1]0
= 0 – 0 = 0
b)
pdf of


l og (1x)dx = 1
distribution of Z
fz(Z) = {log ( 1x ) , z >0
0 ,otherwise

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
1 out of 5
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]