University Statistics and Probability Homework: Solutions and Analysis
VerifiedAdded on 2023/04/21
|5
|485
|103
Homework Assignment
AI Summary
This document contains the solutions to a statistics and probability homework assignment. The solutions cover various probability concepts, including the calculation of probabilities using integrals, solving for unknown parameters in probability distributions, and applying integration techniques to sol...

Solution
Q1a)
Fy(y) = { yexp ( − y2
2 ) , y >0
0 , otherwise
P(Y > y) = ∫
y
∞
f y(y)
= ∫
y
∞
yexp ( − y2
2 ) dy
Substitute
u = − y2
2 → dx=−1
y du
= −∫eu du
∫ au du= au
ln ( a ) , with a = e
= eu
Solve integrals
= ∫ eu du=−eu
u = − y2
2 , then −e
y2
2 +c
[
−e
y2
2 +c ]y∞
= −e
∞2
2 −(−e
y2
2 )
= 0 + e
y2
2
= e
y2
2
Q1a)
Fy(y) = { yexp ( − y2
2 ) , y >0
0 , otherwise
P(Y > y) = ∫
y
∞
f y(y)
= ∫
y
∞
yexp ( − y2
2 ) dy
Substitute
u = − y2
2 → dx=−1
y du
= −∫eu du
∫ au du= au
ln ( a ) , with a = e
= eu
Solve integrals
= ∫ eu du=−eu
u = − y2
2 , then −e
y2
2 +c
[
−e
y2
2 +c ]y∞
= −e
∞2
2 −(−e
y2
2 )
= 0 + e
y2
2
= e
y2
2
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

b)
P (0 < y< 1) = ∫
0
1
f y(y)
= ∫
0
1
yexp ( − y2
2 ) dy
[
−e
y2
2 +c ]01
= −e
12
2 −(−e
02
2 )
-1.64872 + 1
= -0.64872
Q2a)
P(x ≤ m¿=0.5=¿∫
0
m
λ
2 exp (−λx)dx
0.5 => [e− λx]0m
m = ln ( 0.5 )
−λ
b)
P(0.25 < x< 0.75) = ∫
0.25
0.75
f x(x)dx
= ∫
0.25
0.75
8
( x+2 ) 3 dx
Ley u = x + 2 → dx=du
P (0 < y< 1) = ∫
0
1
f y(y)
= ∫
0
1
yexp ( − y2
2 ) dy
[
−e
y2
2 +c ]01
= −e
12
2 −(−e
02
2 )
-1.64872 + 1
= -0.64872
Q2a)
P(x ≤ m¿=0.5=¿∫
0
m
λ
2 exp (−λx)dx
0.5 => [e− λx]0m
m = ln ( 0.5 )
−λ
b)
P(0.25 < x< 0.75) = ∫
0.25
0.75
f x(x)dx
= ∫
0.25
0.75
8
( x+2 ) 3 dx
Ley u = x + 2 → dx=du

= 8 ∫
0.25
0.75
1
u3 du
Solving
∫
0.25
0.75
1
u3 du
∫
0.25
0.75
u2 du = un +1
n+1 with n=−3
= 1
2u2
= 8∫ 1
u3 du=−4
u2
Substitute u = x + 2
= −4
( x+2 )2
= [ −4
( x+2 )2 +C ]0.250.75
= −4
( 0.75+2 ) 2 − −4
( 0.75+ 2 ) 2
= -0.5289 + 0.79012
= 0.26122
Q3a)
P(Z ≤ z ¿=∫
0
∞
−l og(1− x)dx
Let, u = 1-x → dx=−du
∫ log (u)du
Integrate by parts, ∫ fg ' =fg−∫f ' g
0.25
0.75
1
u3 du
Solving
∫
0.25
0.75
1
u3 du
∫
0.25
0.75
u2 du = un +1
n+1 with n=−3
= 1
2u2
= 8∫ 1
u3 du=−4
u2
Substitute u = x + 2
= −4
( x+2 )2
= [ −4
( x+2 )2 +C ]0.250.75
= −4
( 0.75+2 ) 2 − −4
( 0.75+ 2 ) 2
= -0.5289 + 0.79012
= 0.26122
Q3a)
P(Z ≤ z ¿=∫
0
∞
−l og(1− x)dx
Let, u = 1-x → dx=−du
∫ log (u)du
Integrate by parts, ∫ fg ' =fg−∫f ' g
⊘ This is a preview!⊘
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide

f = log(u), g’ = 1
f’ = 1/u, g= u
= ulog(u) - ∫1 du
Applying constant rule
= −∫1 du=u
Solve integration
ulog(u) - ∫1 du
= ulog(u) = u
Substituting
u = 1 – x
x + log(1-x)(1-x)-1
[x + log(1-x)(1-x)-1]0∞
= 0 – 0 = 0
b)
pdf of ∫
−∞
∞
−l og (1−x)dx = 1
distribution of Z
fz(Z) = {−log ( 1−x ) , z >0
0 ,otherwise
f’ = 1/u, g= u
= ulog(u) - ∫1 du
Applying constant rule
= −∫1 du=u
Solve integration
ulog(u) - ∫1 du
= ulog(u) = u
Substituting
u = 1 – x
x + log(1-x)(1-x)-1
[x + log(1-x)(1-x)-1]0∞
= 0 – 0 = 0
b)
pdf of ∫
−∞
∞
−l og (1−x)dx = 1
distribution of Z
fz(Z) = {−log ( 1−x ) , z >0
0 ,otherwise
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

1 out of 5
Related Documents

Your All-in-One AI-Powered Toolkit for Academic Success.
+13062052269
info@desklib.com
Available 24*7 on WhatsApp / Email
Unlock your academic potential
© 2024 | Zucol Services PVT LTD | All rights reserved.