MATH2000 Assignment 1: Solutions to Differential Equations (18-19)
VerifiedAdded on 2023/05/28
|20
|4416
|157
Homework Assignment
AI Summary
This assignment solution provides detailed, step-by-step answers to a range of problems from MATH2000 Assignment 1. It covers solving initial value problems for differential equations, including both homogeneous and non-homogeneous cases with methods like finding complementary functions and particular integrals. The solution demonstrates how to determine if an equation is exact and how to find integrating factors when it is not. It also includes the evaluation of integrals, including those involving inverse hyperbolic functions and the use of substitutions like sech(t). Furthermore, the assignment addresses double integrals, including sketching the domain of integration and evaluating iterated integrals, along with changing the order of integration where necessary. The problems cover a range of calculus and analysis techniques relevant to the course.

(1) Solve the given initial value problem
(a) y’’−6y’ + 13y = 4ex, y (0) = 2, y’ (0) = 4.
Solution:
y’’−6y’ + 13y = 4ex
D2−6D + 13 = 0
D= 6 ∓ √ 36−52
2 =3 ∓ 2 i
CF=C1e3+2i+C2e3-2i
PI= 4 e x
D2−6 D+13
D=1
PI= 4 ex
1−6+13 = ex
2
y= CF+PI= C1e3+2i+C2e3-2i+ ex
2
y (0) = 2
2=C1+C2
+ 1
2
C1+C2¿ 3
2 (1)
y’= C1 (3+2i) e3+2i+C2 (3-2i) e3-2i+ ex
2
y’ (0) = 4
y’ (0) = C1 (3+2i) +C2 (3-2i) + 1
2
C1 (3+2i) +C2 (3-2i) = 7
2 (2)
(1) × (3+2i)
C1(3+2 i)+(3+2 i)C2¿ 3
2(3+2i) (3)
equating ( 2 ) ∧(3)
we get
C2 = 1+3i
4 i
(a) y’’−6y’ + 13y = 4ex, y (0) = 2, y’ (0) = 4.
Solution:
y’’−6y’ + 13y = 4ex
D2−6D + 13 = 0
D= 6 ∓ √ 36−52
2 =3 ∓ 2 i
CF=C1e3+2i+C2e3-2i
PI= 4 e x
D2−6 D+13
D=1
PI= 4 ex
1−6+13 = ex
2
y= CF+PI= C1e3+2i+C2e3-2i+ ex
2
y (0) = 2
2=C1+C2
+ 1
2
C1+C2¿ 3
2 (1)
y’= C1 (3+2i) e3+2i+C2 (3-2i) e3-2i+ ex
2
y’ (0) = 4
y’ (0) = C1 (3+2i) +C2 (3-2i) + 1
2
C1 (3+2i) +C2 (3-2i) = 7
2 (2)
(1) × (3+2i)
C1(3+2 i)+(3+2 i)C2¿ 3
2(3+2i) (3)
equating ( 2 ) ∧(3)
we get
C2 = 1+3i
4 i
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

Substituting value of C2 in (2) we get
C1 (3+2i) + 1+ 3i
4 i (3-2i) = 7
2
C1 (3+2i) = 7
2 −1+3 i
4 i (3-2i)
C1 = 7
2(3+2 i) − 1+ 3i
4 i(3+2 i) (3-2i)
=
7
2 − 9
4 i− 7 i
4
(3+2 i)
= 3+i
2(3+2 i)
Hence,
y= 3+i
2(3+2 i)e(3+2i)+ 1+ 3i
4 i e3-2i+ex
2
(b) y’’−4y’ + 5y = e2x sec(x), y (0) = 1, y’ (0) = 0.
Solution:
y’’−4y’ + 5y = e2x sec(x)
D2−4D + 5 = 0
D= 4 ∓ √ 16−20
2 =2∓ i
CF=C1e(2+i) x+C2e(2-i) x
PI= e2 x sec (x )
D2−4 D+ 5
PI= e2 x sec ( x )
( D+2)2−4 ( D+2)+5
= e2 x sec(x)
D2 +1
= e2 x real part of 1
( D¿¿ 2+1)cos (x )¿
= e2 x real part of e−ix
( D¿¿ 2+1)¿
= e2 x real part of e−ix
(( D+i)¿¿ 2+1)¿
C1 (3+2i) + 1+ 3i
4 i (3-2i) = 7
2
C1 (3+2i) = 7
2 −1+3 i
4 i (3-2i)
C1 = 7
2(3+2 i) − 1+ 3i
4 i(3+2 i) (3-2i)
=
7
2 − 9
4 i− 7 i
4
(3+2 i)
= 3+i
2(3+2 i)
Hence,
y= 3+i
2(3+2 i)e(3+2i)+ 1+ 3i
4 i e3-2i+ex
2
(b) y’’−4y’ + 5y = e2x sec(x), y (0) = 1, y’ (0) = 0.
Solution:
y’’−4y’ + 5y = e2x sec(x)
D2−4D + 5 = 0
D= 4 ∓ √ 16−20
2 =2∓ i
CF=C1e(2+i) x+C2e(2-i) x
PI= e2 x sec (x )
D2−4 D+ 5
PI= e2 x sec ( x )
( D+2)2−4 ( D+2)+5
= e2 x sec(x)
D2 +1
= e2 x real part of 1
( D¿¿ 2+1)cos (x )¿
= e2 x real part of e−ix
( D¿¿ 2+1)¿
= e2 x real part of e−ix
(( D+i)¿¿ 2+1)¿

= e2 x real part of e−ix
D2−2 Di
= e2 x real part of e−ix 1
2 Di ¿
= e2 x real part of e−ix 1
2 Di [1+ D
2 i + ( D
2i )
2
+…]
= e2 x real part of e−ix (−1
2 i )∫1 dx
= e2 x real part of e−ix (−1
2 i ) x
= e2 x real part of ( cos ( x ) −isin ( x ) )(−1
2i ) x
¿ e2 x x sin ( x )
2
y= CF+PI= C1e(2+i) x+C2e(2-i) x+ e2 x x sin ( x )
2
y (0) = 1
1= C1+C2 (1)
y’ (0) = 0.
y’= (2+i) e(2+i) x+(2-i) e(2-i) x+ ¿ ¿ ¿
0= (2+i) e(2+i) x+(2-i) e(2-i) x (2)
(1) × (2+i)
(2+i) =(2+i) C1+(2+i) C2 (3)
equating ( 2 )∧(3)
we get
C2 = 2+i
2 i
Substituting value of C2 in (1) we get
C1+ 2+ i
2 i =1
C1=1- 2+ i
2 i
C1= i−2
2i
D2−2 Di
= e2 x real part of e−ix 1
2 Di ¿
= e2 x real part of e−ix 1
2 Di [1+ D
2 i + ( D
2i )
2
+…]
= e2 x real part of e−ix (−1
2 i )∫1 dx
= e2 x real part of e−ix (−1
2 i ) x
= e2 x real part of ( cos ( x ) −isin ( x ) )(−1
2i ) x
¿ e2 x x sin ( x )
2
y= CF+PI= C1e(2+i) x+C2e(2-i) x+ e2 x x sin ( x )
2
y (0) = 1
1= C1+C2 (1)
y’ (0) = 0.
y’= (2+i) e(2+i) x+(2-i) e(2-i) x+ ¿ ¿ ¿
0= (2+i) e(2+i) x+(2-i) e(2-i) x (2)
(1) × (2+i)
(2+i) =(2+i) C1+(2+i) C2 (3)
equating ( 2 )∧(3)
we get
C2 = 2+i
2 i
Substituting value of C2 in (1) we get
C1+ 2+ i
2 i =1
C1=1- 2+ i
2 i
C1= i−2
2i
⊘ This is a preview!⊘
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide

Hence,
y= i−2
2i e(2+i) x+ 2+ i
2 i e(2-i) x+ e2 x x sin ( x )
2
(2) (a) Show that any equation of the form
M’(x)N (y) + M(x)N’(y) dy
dx =0
is exact.
Show that the equation
exp ( x2 ) sin ( y2)
y + exp ( x2 ) cos ( y2 )
x
dy
dx =0
is not exact. Find a separable function T(x,y) = g(x)h(y) such that
T ( x , y ) exp ( x2 ) sin ( y2 )
y +T ( x , y ) exp ( x2 ) cos ( y2)
x
dy
dx =0
is exact and solve it.
Solution:
M’(x)N (y) + M(x)N’(y) dy
dx =0
du =M’(x)N (y) dx + M(x)N’(y)dy =0 (1)
du= ∂ u
∂ x dx += ∂u
∂ y dy (2)
∂ u
∂ x =M’(x)N (y) (3)
∂u
∂ y = M(x)N’(y) (4)
From (3) and (4)
∂(M ' ( x) N ( y ))
∂ y = ∂(M ( x) N ' ( y ))
∂ x
∂(M ' ( x) N ( y ))
∂ y = exp ( x2 ) sin ( y2)
y
=ex2 (2 y¿ ¿2 cosy 2−siny2 )
y2 ¿
∂(M (x) N ' ( y ))
∂ x = exp ( x2 ) cos ( y2 )
x
y= i−2
2i e(2+i) x+ 2+ i
2 i e(2-i) x+ e2 x x sin ( x )
2
(2) (a) Show that any equation of the form
M’(x)N (y) + M(x)N’(y) dy
dx =0
is exact.
Show that the equation
exp ( x2 ) sin ( y2)
y + exp ( x2 ) cos ( y2 )
x
dy
dx =0
is not exact. Find a separable function T(x,y) = g(x)h(y) such that
T ( x , y ) exp ( x2 ) sin ( y2 )
y +T ( x , y ) exp ( x2 ) cos ( y2)
x
dy
dx =0
is exact and solve it.
Solution:
M’(x)N (y) + M(x)N’(y) dy
dx =0
du =M’(x)N (y) dx + M(x)N’(y)dy =0 (1)
du= ∂ u
∂ x dx += ∂u
∂ y dy (2)
∂ u
∂ x =M’(x)N (y) (3)
∂u
∂ y = M(x)N’(y) (4)
From (3) and (4)
∂(M ' ( x) N ( y ))
∂ y = ∂(M ( x) N ' ( y ))
∂ x
∂(M ' ( x) N ( y ))
∂ y = exp ( x2 ) sin ( y2)
y
=ex2 (2 y¿ ¿2 cosy 2−siny2 )
y2 ¿
∂(M (x) N ' ( y ))
∂ x = exp ( x2 ) cos ( y2 )
x
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

=cosy2 (2 x¿ ¿2 ex2
−ex2
)
x2 ¿
Multiplying both sides by I.F,
I.F=
e∫
∂ (M ( x)N ' (y ))
∂ x − ∂(M ' (x)N ( y))
∂ y
M ’(x)N ( y)
=
e
∫
ex2
cos y2(2 x2−1)
x2 − ex2
(2 y2 cos y2−sin y2 )
y2
ex2
sin y2
y
=
e
∫
y2 (e¿¿ x2 cos y2(2 x2−1))− x2 ex2
(2 y2 cos y2−sin y2)
x2 y2
ex2
sin y2
y
¿
=e∫( 1
y ¿− ycot y2)dy ¿
Put y2=t ;2 ydy =dt
=elogydy−log √ sint dt
= y
√sin y2
There fore, T(x,y)= y
√sin y2
(3) (a) Show that;
arcoth(x) = 1
2 ln (x +1)
( x−1),|x|>1.
Solution:
arcoth(x) = tanh-1x = 1
2 ln (x +1)
( x−1),|x|>1.
tanh-1x = y
x = tanh(y)
x = e y−e− y
e y+ e− y
( e y +e− y ¿ x = e y−e− y
x ey + x e− y = e y−e− y
x e2 y+ x
e y = e2 y −1
e y
x e2 y + x=e2 y−1
−ex2
)
x2 ¿
Multiplying both sides by I.F,
I.F=
e∫
∂ (M ( x)N ' (y ))
∂ x − ∂(M ' (x)N ( y))
∂ y
M ’(x)N ( y)
=
e
∫
ex2
cos y2(2 x2−1)
x2 − ex2
(2 y2 cos y2−sin y2 )
y2
ex2
sin y2
y
=
e
∫
y2 (e¿¿ x2 cos y2(2 x2−1))− x2 ex2
(2 y2 cos y2−sin y2)
x2 y2
ex2
sin y2
y
¿
=e∫( 1
y ¿− ycot y2)dy ¿
Put y2=t ;2 ydy =dt
=elogydy−log √ sint dt
= y
√sin y2
There fore, T(x,y)= y
√sin y2
(3) (a) Show that;
arcoth(x) = 1
2 ln (x +1)
( x−1),|x|>1.
Solution:
arcoth(x) = tanh-1x = 1
2 ln (x +1)
( x−1),|x|>1.
tanh-1x = y
x = tanh(y)
x = e y−e− y
e y+ e− y
( e y +e− y ¿ x = e y−e− y
x ey + x e− y = e y−e− y
x e2 y+ x
e y = e2 y −1
e y
x e2 y + x=e2 y−1

x e2 y + x−e2 y +1= 0
¿
( e2 y )=−(x+1)
(x−1)
( e2 y )= (1+ x)
(1−x)
2y = ln ( 1+x )
( 1−x )
y = 1
2ln ( 1+ x )
( 1−x )
tanh-1x = y = 1
2ln ( 1+ x )
( 1−x )
hence
arcoth(x) = tanh-1x = 1
2 ln ( x +1)
( x−1)
(b) Evaluate the integrals
∫
2
3
1
1−x2 dx ,and ∫ cosh ( √ x)
√ x dx .
Show all working.
Solution:∫
2
3
1
1−x2 dx ,= −∫
2
3
1
x2 −1 dx ,
=∫
2
3
1
( x −1)(x +1) dx
= 1
2∫
2
3
1
x−1 dx- 1
2∫
2
3
1
x +1 dx (1)
Solving 1
2∫
2
3
1
x−1 dx
Substitute u=x-1 , dx=du
= 1
2∫
1
2
1
u du
= 1
2 ln u = 1
2 ln ( x−1) (2)
¿
( e2 y )=−(x+1)
(x−1)
( e2 y )= (1+ x)
(1−x)
2y = ln ( 1+x )
( 1−x )
y = 1
2ln ( 1+ x )
( 1−x )
tanh-1x = y = 1
2ln ( 1+ x )
( 1−x )
hence
arcoth(x) = tanh-1x = 1
2 ln ( x +1)
( x−1)
(b) Evaluate the integrals
∫
2
3
1
1−x2 dx ,and ∫ cosh ( √ x)
√ x dx .
Show all working.
Solution:∫
2
3
1
1−x2 dx ,= −∫
2
3
1
x2 −1 dx ,
=∫
2
3
1
( x −1)(x +1) dx
= 1
2∫
2
3
1
x−1 dx- 1
2∫
2
3
1
x +1 dx (1)
Solving 1
2∫
2
3
1
x−1 dx
Substitute u=x-1 , dx=du
= 1
2∫
1
2
1
u du
= 1
2 ln u = 1
2 ln ( x−1) (2)
⊘ This is a preview!⊘
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide

Solving 1
2∫
2
3
1
x +1 dx
Substitute v=x+1 , dx=dv
= 1
2∫
1
2
1
v dv
= 1
2 ln v = 1
2 ln ( x+1) (3)
From equation we get
∫
2
3
1
1−x2 dx= 1
2 ln ( x+ 1 )− 1
2 ln ¿)
= ln ( 4 )−ln ( 3 )−ln (2)
2 = -0.2027325.
solve∫ cosh (√ x)
√ x dx .
Solution: Substitute u= √ x , dx = 2 √ x du
∫ cosh ( √x )
√ x dx =2∫ cosh ( u ) dx
¿ 2 sinh ¿)
¿ 2 sinh ¿)+C
(4) Determine the existence and uniqueness of a solution to the initial value problem
y’= cos(xy )
y √ 1−x2 , y (0) =2
Solution:
y’= cos(xy )
y √ 1−x2 , y (0) =2
f(x,y)= cos( xy )
y √ 1−x2
when x=0,y=2 apply values in f(x,y)
f(x,y)= cos( 0)
2 √ 1 = 1
2
hence f(x,y) is continuous at (0,2)
2∫
2
3
1
x +1 dx
Substitute v=x+1 , dx=dv
= 1
2∫
1
2
1
v dv
= 1
2 ln v = 1
2 ln ( x+1) (3)
From equation we get
∫
2
3
1
1−x2 dx= 1
2 ln ( x+ 1 )− 1
2 ln ¿)
= ln ( 4 )−ln ( 3 )−ln (2)
2 = -0.2027325.
solve∫ cosh (√ x)
√ x dx .
Solution: Substitute u= √ x , dx = 2 √ x du
∫ cosh ( √x )
√ x dx =2∫ cosh ( u ) dx
¿ 2 sinh ¿)
¿ 2 sinh ¿)+C
(4) Determine the existence and uniqueness of a solution to the initial value problem
y’= cos(xy )
y √ 1−x2 , y (0) =2
Solution:
y’= cos(xy )
y √ 1−x2 , y (0) =2
f(x,y)= cos( xy )
y √ 1−x2
when x=0,y=2 apply values in f(x,y)
f(x,y)= cos( 0)
2 √ 1 = 1
2
hence f(x,y) is continuous at (0,2)
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

∂ f (x , y)
∂ y = ∂
∂ y ( cos ( xy )
y √ 1−x2 )
¿ 1
√1−x2
∂
∂ x
cos (xy )
y
¿ 1
√1−x2 [
−sin ( xy ) ∂ xy
∂ y . y −cos ( xy )
y2 ]
¿ 1
√ 1−x2 [−xysin ( xy ) −cos ( xy )
y2 ]
¿ −xysin ( xy ) −cos ( xy )
y2 √ 1−x2
x=0,y=2 apply values in f’(x,y)
f’(x,y) ¿ 0−cos ( 0 )
22 √ 1−0 =−1
4
hence f’(x,y) is continuous at (0,2)
Hence this equation has unique solution.
(5) Express the inverse hyperbolic secant function (usually written sech−1, arsech or arcsech) in
terms of the natural logarithm. Note that the domain is (0,1] while the range is [0,∞].
Solution:
sech (x)= 1
cosh ( x) = 2
ex+ e−x
y= sech−1 (x)
x= sech (y)= 1
cosh ¿ ¿= 2
e y+ e− y
1
x = e y+ e− y
2
0=e y +e− y− 2
x
=¿)e y
=e2 y+ e0− 2e y
x
=(e y )2−2 ( e¿¿ y )
x +1 ¿
∂ y = ∂
∂ y ( cos ( xy )
y √ 1−x2 )
¿ 1
√1−x2
∂
∂ x
cos (xy )
y
¿ 1
√1−x2 [
−sin ( xy ) ∂ xy
∂ y . y −cos ( xy )
y2 ]
¿ 1
√ 1−x2 [−xysin ( xy ) −cos ( xy )
y2 ]
¿ −xysin ( xy ) −cos ( xy )
y2 √ 1−x2
x=0,y=2 apply values in f’(x,y)
f’(x,y) ¿ 0−cos ( 0 )
22 √ 1−0 =−1
4
hence f’(x,y) is continuous at (0,2)
Hence this equation has unique solution.
(5) Express the inverse hyperbolic secant function (usually written sech−1, arsech or arcsech) in
terms of the natural logarithm. Note that the domain is (0,1] while the range is [0,∞].
Solution:
sech (x)= 1
cosh ( x) = 2
ex+ e−x
y= sech−1 (x)
x= sech (y)= 1
cosh ¿ ¿= 2
e y+ e− y
1
x = e y+ e− y
2
0=e y +e− y− 2
x
=¿)e y
=e2 y+ e0− 2e y
x
=(e y )2−2 ( e¿¿ y )
x +1 ¿

e y= 1
x + √1−x2
x
ln (e y ¿=ln ( 1
x + √1−x2
x )
y=ln ( 1
x + √1−x2
x )
sech−1 (x)¿ ln ( 1
x + √1−x2
x )
(6) Evaluate the integral;
∫
−0.5
−0.2
1
x √ 1−x2 dx
by making a substitution involving sech(t). Use your answer to question (5) to give the final
answer correct to 4 decimal places. (Hint, why can you not make the simple substitution x =
sech(t) over this domain?)
Solution:
∫
−0.5
−0.2
1
x √ 1−x2 dx
Put x=sech (t), dx = - sech(t)tanh(t) dt
∫
−0.5
−0.2 −sech ( t) tan (t )
sech (t ) √1−sech (t)2 dt
√1−sech ( t)2=√ tanh (t)2 =tan (t )
∫
−0.5
−0.2 −sech (t )tan (t )
sech (t ) tan (t ) dt
∫−1 dt= -t =- sech-1 (x) =−ln ( 1
x + √1−x2
x )
∫
−0.5
−0.2
1
x √ 1−x2 dx=ln ( 1
−0.5 + √1−0.52
−0.5 )−ln ( 1
−0.2 + √1−0.22
−0.2 )
¿ ln (−3.73 ) −ln (−9.899 ) =ln 3.73
9.899
¿−¿0.9760
(7) Consider the double integrals;
∫
0
3 π
4
∫
1
2
er2
rdrdθand∫
0
4
∫
√ y
2
ex3
dxdy
x + √1−x2
x
ln (e y ¿=ln ( 1
x + √1−x2
x )
y=ln ( 1
x + √1−x2
x )
sech−1 (x)¿ ln ( 1
x + √1−x2
x )
(6) Evaluate the integral;
∫
−0.5
−0.2
1
x √ 1−x2 dx
by making a substitution involving sech(t). Use your answer to question (5) to give the final
answer correct to 4 decimal places. (Hint, why can you not make the simple substitution x =
sech(t) over this domain?)
Solution:
∫
−0.5
−0.2
1
x √ 1−x2 dx
Put x=sech (t), dx = - sech(t)tanh(t) dt
∫
−0.5
−0.2 −sech ( t) tan (t )
sech (t ) √1−sech (t)2 dt
√1−sech ( t)2=√ tanh (t)2 =tan (t )
∫
−0.5
−0.2 −sech (t )tan (t )
sech (t ) tan (t ) dt
∫−1 dt= -t =- sech-1 (x) =−ln ( 1
x + √1−x2
x )
∫
−0.5
−0.2
1
x √ 1−x2 dx=ln ( 1
−0.5 + √1−0.52
−0.5 )−ln ( 1
−0.2 + √1−0.22
−0.2 )
¿ ln (−3.73 ) −ln (−9.899 ) =ln 3.73
9.899
¿−¿0.9760
(7) Consider the double integrals;
∫
0
3 π
4
∫
1
2
er2
rdrdθand∫
0
4
∫
√ y
2
ex3
dxdy
⊘ This is a preview!⊘
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide

(a) Sketch the domain of integration in each case.
Solution:
(b) Evaluate the integrals.
Solution:
∫
0
3 π
4
∫
1
2
er2
rdrdθ
= r2=t ; 2 rdr=dt
= 1
2∬
1
4
et dtdθ
= 1
2 ∫
0
3 π
4
(e¿¿ 4−¿ e) dθ ¿ ¿
= 3 π
8 (e4 −e)
∫
0
4
∫
√ y
2
ex3
dxdy
changing the order of integration
y :0 ¿ x2
x : 0¿ 2
Solution:
(b) Evaluate the integrals.
Solution:
∫
0
3 π
4
∫
1
2
er2
rdrdθ
= r2=t ; 2 rdr=dt
= 1
2∬
1
4
et dtdθ
= 1
2 ∫
0
3 π
4
(e¿¿ 4−¿ e) dθ ¿ ¿
= 3 π
8 (e4 −e)
∫
0
4
∫
√ y
2
ex3
dxdy
changing the order of integration
y :0 ¿ x2
x : 0¿ 2
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

=∫
0
2
∫
0
x2
ex3
dydx
¿∫
0
2
ex3
y , 0 , x2 dx
¿∫
0
2
ex3
x2 dx; put x3=t ,3 x2 dx =dt
¿ 1
3 ∫
0
8
et dt
= 1
3 ( e8−1)
(8) Consider the expression
I= ∫
0
1
∫
0
1− z2
∫
0
z
dxdydz +∫
0
1
∫
1− z2
1
∫
0
√ 1− y
dxdydz
(a) Determine the value of I by evaluating the iterated integrals given.
Solution:
I= ∫
0
1
∫
0
1− z2
∫
0
z
dxdydz +∫
0
1
∫
1− z2
1
∫
0
√ 1− y
dxdydz
∫
0
1
∫
0
1− z2
∫
0
z
dxdydz= ∫
0
1
∫
0
1− z2
z dydz
=∫
0
1
z (1−z2 ¿) dz ¿
=∫
0
1
z2−z3 dz
= 1
2 − 1
4 = 1
4
∫
0
1
∫
1− z2
1
∫
0
√ 1− y
dxdydz=∫
0
1
∫
1− z2
1
√1− y dydz
Put 1-y =u
∫ √1− y dy =−∫ √u du
2u
3
2
3
= 2(1− y )
3
2
3
0
2
∫
0
x2
ex3
dydx
¿∫
0
2
ex3
y , 0 , x2 dx
¿∫
0
2
ex3
x2 dx; put x3=t ,3 x2 dx =dt
¿ 1
3 ∫
0
8
et dt
= 1
3 ( e8−1)
(8) Consider the expression
I= ∫
0
1
∫
0
1− z2
∫
0
z
dxdydz +∫
0
1
∫
1− z2
1
∫
0
√ 1− y
dxdydz
(a) Determine the value of I by evaluating the iterated integrals given.
Solution:
I= ∫
0
1
∫
0
1− z2
∫
0
z
dxdydz +∫
0
1
∫
1− z2
1
∫
0
√ 1− y
dxdydz
∫
0
1
∫
0
1− z2
∫
0
z
dxdydz= ∫
0
1
∫
0
1− z2
z dydz
=∫
0
1
z (1−z2 ¿) dz ¿
=∫
0
1
z2−z3 dz
= 1
2 − 1
4 = 1
4
∫
0
1
∫
1− z2
1
∫
0
√ 1− y
dxdydz=∫
0
1
∫
1− z2
1
√1− y dydz
Put 1-y =u
∫ √1− y dy =−∫ √u du
2u
3
2
3
= 2(1− y )
3
2
3

∫
0
1
∫
1− z2
1
∫
0
√ 1− y
dxdydz= 2
3 ∫
0
1
z3 dz
= 1
6
I= ∫
0
1
∫
0
1− z2
∫
0
z
dxdydz +∫
0
1
∫
1− z2
1
∫
0
√ 1− y
dxdydz = 5
12
(b) Rewrite I using the order of integration dy dx dz and evaluate the new expression.
Solution:
I= ∫
0
1
∫
0
z
∫
0
1− z2
dydxdz +∫
0
1
∫
0
√ 1− y
∫
1− z2
1
dydxdz
∫
0
1
∫
0
z
∫
0
1− z2
dydxdz = ∫
0
1
∫
0
z
(¿¿1−z2 ) dxdz ¿ ¿
= ∫
0
1
(1−z2 )z dz
=∫
0
1
z2−z3 dz
= 1
2 − 1
4 = 1
4
∫
0
1
∫
0
√ 1− y
∫
1− z2
1
dydxdz=∫
0
1
∫
0
√ 1− y
z2 dxdz
= ∫
0
1
z2 ( √ 1− y ) dz
= 1
3 √1− y
I= ∫
0
1
∫
0
z
∫
0
1− z2
dydxdz +∫
0
1
∫
0
√ 1− y
∫
1− z2
1
dydxdz = 1
4 + 1
3 √1− y
(9) Find the volume of the solid enclosed by the paraboloid z − x2 − y2 = −1 and the hemisphere
z=√ 1−x2− y2
Solution:
z − x2 − y2 = −1
x2 + y2 = z +1…………. (1)
z=√ 1−x2− y2
0
1
∫
1− z2
1
∫
0
√ 1− y
dxdydz= 2
3 ∫
0
1
z3 dz
= 1
6
I= ∫
0
1
∫
0
1− z2
∫
0
z
dxdydz +∫
0
1
∫
1− z2
1
∫
0
√ 1− y
dxdydz = 5
12
(b) Rewrite I using the order of integration dy dx dz and evaluate the new expression.
Solution:
I= ∫
0
1
∫
0
z
∫
0
1− z2
dydxdz +∫
0
1
∫
0
√ 1− y
∫
1− z2
1
dydxdz
∫
0
1
∫
0
z
∫
0
1− z2
dydxdz = ∫
0
1
∫
0
z
(¿¿1−z2 ) dxdz ¿ ¿
= ∫
0
1
(1−z2 )z dz
=∫
0
1
z2−z3 dz
= 1
2 − 1
4 = 1
4
∫
0
1
∫
0
√ 1− y
∫
1− z2
1
dydxdz=∫
0
1
∫
0
√ 1− y
z2 dxdz
= ∫
0
1
z2 ( √ 1− y ) dz
= 1
3 √1− y
I= ∫
0
1
∫
0
z
∫
0
1− z2
dydxdz +∫
0
1
∫
0
√ 1− y
∫
1− z2
1
dydxdz = 1
4 + 1
3 √1− y
(9) Find the volume of the solid enclosed by the paraboloid z − x2 − y2 = −1 and the hemisphere
z=√ 1−x2− y2
Solution:
z − x2 − y2 = −1
x2 + y2 = z +1…………. (1)
z=√ 1−x2− y2
⊘ This is a preview!⊘
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide
1 out of 20
Related Documents
Your All-in-One AI-Powered Toolkit for Academic Success.
+13062052269
info@desklib.com
Available 24*7 on WhatsApp / Email
Unlock your academic potential
Copyright © 2020–2026 A2Z Services. All Rights Reserved. Developed and managed by ZUCOL.





