MATH2000 Assignment 1: Solutions to Differential Equations (18-19)

Verified

Added on  2023/05/28

|20
|4416
|157
Homework Assignment
AI Summary
This assignment solution provides detailed, step-by-step answers to a range of problems from MATH2000 Assignment 1. It covers solving initial value problems for differential equations, including both homogeneous and non-homogeneous cases with methods like finding complementary functions and particular integrals. The solution demonstrates how to determine if an equation is exact and how to find integrating factors when it is not. It also includes the evaluation of integrals, including those involving inverse hyperbolic functions and the use of substitutions like sech(t). Furthermore, the assignment addresses double integrals, including sketching the domain of integration and evaluating iterated integrals, along with changing the order of integration where necessary. The problems cover a range of calculus and analysis techniques relevant to the course.
Document Page
(1) Solve the given initial value problem
(a) y’’−6y’ + 13y = 4ex, y (0) = 2, y’ (0) = 4.
Solution:
y’’−6y’ + 13y = 4ex
D2−6D + 13 = 0
D= 6 3652
2 =3 2 i
CF=C1e3+2i+C2e3-2i
PI= 4 e x
D26 D+13
D=1
PI= 4 ex
16+13 = ex
2
y= CF+PI= C1e3+2i+C2e3-2i+ ex
2
y (0) = 2
2=C1+C2
+ 1
2
C1+C2¿ 3
2 (1)
y’= C1 (3+2i) e3+2i+C2 (3-2i) e3-2i+ ex
2
y’ (0) = 4
y’ (0) = C1 (3+2i) +C2 (3-2i) + 1
2
C1 (3+2i) +C2 (3-2i) = 7
2 (2)
(1) × (3+2i)
C1(3+2 i)+(3+2 i)C2¿ 3
2(3+2i) (3)
equating ( 2 ) (3)
we get
C2 = 1+3i
4 i
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Substituting value of C2 in (2) we get
C1 (3+2i) + 1+ 3i
4 i (3-2i) = 7
2
C1 (3+2i) = 7
2 1+3 i
4 i (3-2i)
C1 = 7
2(3+2 i) 1+ 3i
4 i(3+2 i) (3-2i)
=
7
2 9
4 i 7 i
4
(3+2 i)
= 3+i
2(3+2 i)
Hence,
y= 3+i
2(3+2 i)e(3+2i)+ 1+ 3i
4 i e3-2i+ex
2
(b) y’’−4y’ + 5y = e2x sec(x), y (0) = 1, y’ (0) = 0.
Solution:
y’’−4y’ + 5y = e2x sec(x)
D2−4D + 5 = 0
D= 4 1620
2 =2 i
CF=C1e(2+i) x+C2e(2-i) x
PI= e2 x sec (x )
D24 D+ 5
PI= e2 x sec ( x )
( D+2)24 ( D+2)+5
= e2 x sec(x)
D2 +1
= e2 x real part of 1
( D¿¿ 2+1)cos (x )¿
= e2 x real part of eix
( D¿¿ 2+1)¿
= e2 x real part of eix
(( D+i)¿¿ 2+1)¿
Document Page
= e2 x real part of eix
D22 Di
= e2 x real part of eix 1
2 Di ¿
= e2 x real part of eix 1
2 Di [1+ D
2 i + ( D
2i )
2
+]
= e2 x real part of eix (1
2 i )1 dx
= e2 x real part of eix (1
2 i ) x
= e2 x real part of ( cos ( x ) isin ( x ) )(1
2i ) x
¿ e2 x x sin ( x )
2
y= CF+PI= C1e(2+i) x+C2e(2-i) x+ e2 x x sin ( x )
2
y (0) = 1
1= C1+C2 (1)
y’ (0) = 0.
y’= (2+i) e(2+i) x+(2-i) e(2-i) x+ ¿ ¿ ¿
0= (2+i) e(2+i) x+(2-i) e(2-i) x (2)
(1) × (2+i)
(2+i) =(2+i) C1+(2+i) C2 (3)
equating ( 2 )(3)
we get
C2 = 2+i
2 i
Substituting value of C2 in (1) we get
C1+ 2+ i
2 i =1
C1=1- 2+ i
2 i
C1= i2
2i
Document Page
Hence,
y= i2
2i e(2+i) x+ 2+ i
2 i e(2-i) x+ e2 x x sin ( x )
2
(2) (a) Show that any equation of the form
M’(x)N (y) + M(x)N’(y) dy
dx =0
is exact.
Show that the equation
exp ( x2 ) sin ( y2)
y + exp ( x2 ) cos ( y2 )
x
dy
dx =0
is not exact. Find a separable function T(x,y) = g(x)h(y) such that
T ( x , y ) exp ( x2 ) sin ( y2 )
y +T ( x , y ) exp ( x2 ) cos ( y2)
x
dy
dx =0
is exact and solve it.
Solution:
M’(x)N (y) + M(x)N’(y) dy
dx =0
du =M’(x)N (y) dx + M(x)N’(y)dy =0 (1)
du= u
x dx += u
y dy (2)
u
x =M’(x)N (y) (3)
u
y = M(x)N’(y) (4)
From (3) and (4)
(M ' ( x) N ( y ))
y = (M ( x) N ' ( y ))
x
(M ' ( x) N ( y ))
y = exp ( x2 ) sin ( y2)
y
=ex2 (2 y¿ ¿2 cosy 2siny2 )
y2 ¿
(M (x) N ' ( y ))
x = exp ( x2 ) cos ( y2 )
x
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
=cosy2 (2 x¿ ¿2 ex2
ex2
)
x2 ¿
Multiplying both sides by I.F,
I.F=
e
(M ( x)N ' (y ))
x (M ' (x)N ( y))
y
M (x)N ( y)
=
e

ex2
cos y2(2 x21)
x2 ex2
(2 y2 cos y2sin y2 )
y2
ex2
sin y2
y
=
e

y2 (e¿¿ x2 cos y2(2 x21)) x2 ex2
(2 y2 cos y2sin y2)
x2 y2
ex2
sin y2
y
¿
=e( 1
y ¿ ycot y2)dy ¿
Put y2=t ;2 ydy =dt
=elogydylog sint dt
= y
sin y2
There fore, T(x,y)= y
sin y2
(3) (a) Show that;
arcoth(x) = 1
2 ln (x +1)
( x1),|x|>1.
Solution:
arcoth(x) = tanh-1x = 1
2 ln (x +1)
( x1),|x|>1.
tanh-1x = y
x = tanh(y)
x = e ye y
e y+ e y
( e y +e y ¿ x = e ye y
x ey + x e y = e ye y
x e2 y+ x
e y = e2 y 1
e y
x e2 y + x=e2 y1
Document Page
x e2 y + xe2 y +1= 0
¿
( e2 y )=(x+1)
(x1)
( e2 y )= (1+ x)
(1x)
2y = ln ( 1+x )
( 1x )
y = 1
2ln ( 1+ x )
( 1x )
tanh-1x = y = 1
2ln ( 1+ x )
( 1x )
hence
arcoth(x) = tanh-1x = 1
2 ln ( x +1)
( x1)
(b) Evaluate the integrals

2
3
1
1x2 dx ,and cosh ( x)
x dx .
Show all working.
Solution:
2
3
1
1x2 dx ,=
2
3
1
x2 1 dx ,
=
2
3
1
( x 1)(x +1) dx
= 1
2
2
3
1
x1 dx- 1
2
2
3
1
x +1 dx (1)
Solving 1
2
2
3
1
x1 dx
Substitute u=x-1 , dx=du
= 1
2
1
2
1
u du
= 1
2 ln u = 1
2 ln ( x1) (2)
Document Page
Solving 1
2
2
3
1
x +1 dx
Substitute v=x+1 , dx=dv
= 1
2
1
2
1
v dv
= 1
2 ln v = 1
2 ln ( x+1) (3)
From equation we get

2
3
1
1x2 dx= 1
2 ln ( x+ 1 ) 1
2 ln ¿)
= ln ( 4 )ln ( 3 )ln (2)
2 = -0.2027325.
solve cosh ( x)
x dx .
Solution: Substitute u= x , dx = 2 x du
cosh ( x )
x dx =2 cosh ( u ) dx
¿ 2 sinh ¿)
¿ 2 sinh ¿)+C
(4) Determine the existence and uniqueness of a solution to the initial value problem
y’= cos(xy )
y 1x2 , y (0) =2
Solution:
y’= cos(xy )
y 1x2 , y (0) =2
f(x,y)= cos( xy )
y 1x2
when x=0,y=2 apply values in f(x,y)
f(x,y)= cos( 0)
2 1 = 1
2
hence f(x,y) is continuous at (0,2)
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
f (x , y)
y =
y ( cos ( xy )
y 1x2 )
¿ 1
1x2

x
cos (xy )
y
¿ 1
1x2 [
sin ( xy ) xy
y . y cos ( xy )
y2 ]
¿ 1
1x2 [xysin ( xy ) cos ( xy )
y2 ]
¿ xysin ( xy ) cos ( xy )
y2 1x2
x=0,y=2 apply values in f’(x,y)
f’(x,y) ¿ 0cos ( 0 )
22 10 =1
4
hence f’(x,y) is continuous at (0,2)
Hence this equation has unique solution.
(5) Express the inverse hyperbolic secant function (usually written sech−1, arsech or arcsech) in
terms of the natural logarithm. Note that the domain is (0,1] while the range is [0,∞].
Solution:
sech (x)= 1
cosh ( x) = 2
ex+ ex
y= sech−1 (x)
x= sech (y)= 1
cosh ¿ ¿= 2
e y+ e y
1
x = e y+ e y
2
0=e y +e y 2
x
=¿)e y
=e2 y+ e0 2e y
x
=(e y )22 ( e¿¿ y )
x +1 ¿
Document Page
e y= 1
x + 1x2
x
ln (e y ¿=ln ( 1
x + 1x2
x )
y=ln ( 1
x + 1x2
x )
sech−1 (x)¿ ln ( 1
x + 1x2
x )
(6) Evaluate the integral;

0.5
0.2
1
x 1x2 dx
by making a substitution involving sech(t). Use your answer to question (5) to give the final
answer correct to 4 decimal places. (Hint, why can you not make the simple substitution x =
sech(t) over this domain?)
Solution:

0.5
0.2
1
x 1x2 dx
Put x=sech (t), dx = - sech(t)tanh(t) dt

0.5
0.2 sech ( t) tan (t )
sech (t ) 1sech (t)2 dt
1sech ( t)2= tanh (t)2 =tan (t )

0.5
0.2 sech (t )tan (t )
sech (t ) tan (t ) dt
1 dt= -t =- sech-1 (x) =ln ( 1
x + 1x2
x )

0.5
0.2
1
x 1x2 dx=ln ( 1
0.5 + 10.52
0.5 )ln ( 1
0.2 + 10.22
0.2 )
¿ ln (3.73 ) ln (9.899 ) =ln 3.73
9.899
¿¿0.9760
(7) Consider the double integrals;

0
3 π
4

1
2
er2
rdrdθand
0
4

y
2
ex3
dxdy
Document Page
(a) Sketch the domain of integration in each case.
Solution:
(b) Evaluate the integrals.
Solution:

0
3 π
4

1
2
er2
rdrdθ
= r2=t ; 2 rdr=dt
= 1
2
1
4
et dtdθ
= 1
2
0
3 π
4
(e¿¿ 4¿ e) ¿ ¿
= 3 π
8 (e4 e)

0
4

y
2
ex3
dxdy
changing the order of integration
y :0 ¿ x2
x : 0¿ 2
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
=
0
2

0
x2
ex3
dydx
¿
0
2
ex3
y , 0 , x2 dx
¿
0
2
ex3
x2 dx; put x3=t ,3 x2 dx =dt
¿ 1
3
0
8
et dt
= 1
3 ( e81)
(8) Consider the expression
I=
0
1

0
1 z2

0
z
dxdydz +
0
1

1 z2
1

0
1 y
dxdydz
(a) Determine the value of I by evaluating the iterated integrals given.
Solution:
I=
0
1

0
1 z2

0
z
dxdydz +
0
1

1 z2
1

0
1 y
dxdydz

0
1

0
1 z2

0
z
dxdydz=
0
1

0
1 z2
z dydz
=
0
1
z (1z2 ¿) dz ¿
=
0
1
z2z3 dz
= 1
2 1
4 = 1
4

0
1

1 z2
1

0
1 y
dxdydz=
0
1

1 z2
1
1 y dydz
Put 1-y =u
1 y dy = u du
2u
3
2
3
= 2(1 y )
3
2
3
Document Page

0
1

1 z2
1

0
1 y
dxdydz= 2
3
0
1
z3 dz
= 1
6
I=
0
1

0
1 z2

0
z
dxdydz +
0
1

1 z2
1

0
1 y
dxdydz = 5
12
(b) Rewrite I using the order of integration dy dx dz and evaluate the new expression.
Solution:
I=
0
1

0
z

0
1 z2
dydxdz +
0
1

0
1 y

1 z2
1
dydxdz

0
1

0
z

0
1 z2
dydxdz =
0
1

0
z
(¿¿1z2 ) dxdz ¿ ¿
=
0
1
(1z2 )z dz
=
0
1
z2z3 dz
= 1
2 1
4 = 1
4

0
1

0
1 y

1 z2
1
dydxdz=
0
1

0
1 y
z2 dxdz
=
0
1
z2 ( 1 y ) dz
= 1
3 1 y
I=
0
1

0
z

0
1 z2
dydxdz +
0
1

0
1 y

1 z2
1
dydxdz = 1
4 + 1
3 1 y
(9) Find the volume of the solid enclosed by the paraboloid z − x2 − y2 = −1 and the hemisphere
z= 1x2 y2
Solution:
z − x2 − y2 = −1
x2 + y2 = z +1…………. (1)
z= 1x2 y2
chevron_up_icon
1 out of 20
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]