Solutions to Differential Equations and Integrals

Verified

Added on  2023/05/28

|20
|4416
|157
AI Summary
Get step-by-step solutions to differential equations and integrals. Solve initial value problems and evaluate integrals with Desklib. Expert assistance available 24/7.
tabler-icon-diamond-filled.svg

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
(1) Solve the given initial value problem
(a) y’’−6y’ + 13y = 4ex, y (0) = 2, y’ (0) = 4.
Solution:
y’’−6y’ + 13y = 4ex
D2−6D + 13 = 0
D= 6 3652
2 =3 2 i
CF=C1e3+2i+C2e3-2i
PI= 4 e x
D26 D+13
D=1
PI= 4 ex
16+13 = ex
2
y= CF+PI= C1e3+2i+C2e3-2i+ ex
2
y (0) = 2
2=C1+C2
+ 1
2
C1+C2¿ 3
2 (1)
y’= C1 (3+2i) e3+2i+C2 (3-2i) e3-2i+ ex
2
y’ (0) = 4
y’ (0) = C1 (3+2i) +C2 (3-2i) + 1
2
C1 (3+2i) +C2 (3-2i) = 7
2 (2)
(1) × (3+2i)
C1(3+2 i)+(3+2 i)C2¿ 3
2(3+2i) (3)
equating ( 2 ) (3)
we get
C2 = 1+3i
4 i
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Substituting value of C2 in (2) we get
C1 (3+2i) + 1+ 3i
4 i (3-2i) = 7
2
C1 (3+2i) = 7
2 1+3 i
4 i (3-2i)
C1 = 7
2(3+2 i) 1+ 3i
4 i(3+2 i) (3-2i)
=
7
2 9
4 i 7 i
4
(3+2 i)
= 3+i
2(3+2 i)
Hence,
y= 3+i
2(3+2 i)e(3+2i)+ 1+ 3i
4 i e3-2i+ex
2
(b) y’’−4y’ + 5y = e2x sec(x), y (0) = 1, y’ (0) = 0.
Solution:
y’’−4y’ + 5y = e2x sec(x)
D2−4D + 5 = 0
D= 4 1620
2 =2 i
CF=C1e(2+i) x+C2e(2-i) x
PI= e2 x sec (x )
D24 D+ 5
PI= e2 x sec ( x )
( D+2)24 ( D+2)+5
= e2 x sec(x)
D2 +1
= e2 x real part of 1
( D¿¿ 2+1)cos (x )¿
= e2 x real part of eix
( D¿¿ 2+1)¿
= e2 x real part of eix
(( D+i)¿¿ 2+1)¿
Document Page
= e2 x real part of eix
D22 Di
= e2 x real part of eix 1
2 Di ¿
= e2 x real part of eix 1
2 Di [1+ D
2 i + ( D
2i )
2
+]
= e2 x real part of eix (1
2 i )1 dx
= e2 x real part of eix (1
2 i ) x
= e2 x real part of ( cos ( x ) isin ( x ) )(1
2i ) x
¿ e2 x x sin ( x )
2
y= CF+PI= C1e(2+i) x+C2e(2-i) x+ e2 x x sin ( x )
2
y (0) = 1
1= C1+C2 (1)
y’ (0) = 0.
y’= (2+i) e(2+i) x+(2-i) e(2-i) x+ ¿ ¿ ¿
0= (2+i) e(2+i) x+(2-i) e(2-i) x (2)
(1) × (2+i)
(2+i) =(2+i) C1+(2+i) C2 (3)
equating ( 2 )(3)
we get
C2 = 2+i
2 i
Substituting value of C2 in (1) we get
C1+ 2+ i
2 i =1
C1=1- 2+ i
2 i
C1= i2
2i
Document Page
Hence,
y= i2
2i e(2+i) x+ 2+ i
2 i e(2-i) x+ e2 x x sin ( x )
2
(2) (a) Show that any equation of the form
M’(x)N (y) + M(x)N’(y) dy
dx =0
is exact.
Show that the equation
exp ( x2 ) sin ( y2)
y + exp ( x2 ) cos ( y2 )
x
dy
dx =0
is not exact. Find a separable function T(x,y) = g(x)h(y) such that
T ( x , y ) exp ( x2 ) sin ( y2 )
y +T ( x , y ) exp ( x2 ) cos ( y2)
x
dy
dx =0
is exact and solve it.
Solution:
M’(x)N (y) + M(x)N’(y) dy
dx =0
du =M’(x)N (y) dx + M(x)N’(y)dy =0 (1)
du= u
x dx += u
y dy (2)
u
x =M’(x)N (y) (3)
u
y = M(x)N’(y) (4)
From (3) and (4)
(M ' ( x) N ( y ))
y = (M ( x) N ' ( y ))
x
(M ' ( x) N ( y ))
y = exp ( x2 ) sin ( y2)
y
=ex2 (2 y¿ ¿2 cosy 2siny2 )
y2 ¿
(M (x) N ' ( y ))
x = exp ( x2 ) cos ( y2 )
x
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
=cosy2 (2 x¿ ¿2 ex2
ex2
)
x2 ¿
Multiplying both sides by I.F,
I.F=
e
(M ( x)N ' (y ))
x (M ' (x)N ( y))
y
M (x)N ( y)
=
e

ex2
cos y2(2 x21)
x2 ex2
(2 y2 cos y2sin y2 )
y2
ex2
sin y2
y
=
e

y2 (e¿¿ x2 cos y2(2 x21)) x2 ex2
(2 y2 cos y2sin y2)
x2 y2
ex2
sin y2
y
¿
=e( 1
y ¿ ycot y2)dy ¿
Put y2=t ;2 ydy =dt
=elogydylog sint dt
= y
sin y2
There fore, T(x,y)= y
sin y2
(3) (a) Show that;
arcoth(x) = 1
2 ln (x +1)
( x1),|x|>1.
Solution:
arcoth(x) = tanh-1x = 1
2 ln (x +1)
( x1),|x|>1.
tanh-1x = y
x = tanh(y)
x = e ye y
e y+ e y
( e y +e y ¿ x = e ye y
x ey + x e y = e ye y
x e2 y+ x
e y = e2 y 1
e y
x e2 y + x=e2 y1
Document Page
x e2 y + xe2 y +1= 0
¿
( e2 y )=(x+1)
(x1)
( e2 y )= (1+ x)
(1x)
2y = ln ( 1+x )
( 1x )
y = 1
2ln ( 1+ x )
( 1x )
tanh-1x = y = 1
2ln ( 1+ x )
( 1x )
hence
arcoth(x) = tanh-1x = 1
2 ln ( x +1)
( x1)
(b) Evaluate the integrals

2
3
1
1x2 dx ,and cosh ( x)
x dx .
Show all working.
Solution:
2
3
1
1x2 dx ,=
2
3
1
x2 1 dx ,
=
2
3
1
( x 1)(x +1) dx
= 1
2
2
3
1
x1 dx- 1
2
2
3
1
x +1 dx (1)
Solving 1
2
2
3
1
x1 dx
Substitute u=x-1 , dx=du
= 1
2
1
2
1
u du
= 1
2 ln u = 1
2 ln ( x1) (2)
Document Page
Solving 1
2
2
3
1
x +1 dx
Substitute v=x+1 , dx=dv
= 1
2
1
2
1
v dv
= 1
2 ln v = 1
2 ln ( x+1) (3)
From equation we get

2
3
1
1x2 dx= 1
2 ln ( x+ 1 ) 1
2 ln ¿)
= ln ( 4 )ln ( 3 )ln (2)
2 = -0.2027325.
solve cosh ( x)
x dx .
Solution: Substitute u= x , dx = 2 x du
cosh ( x )
x dx =2 cosh ( u ) dx
¿ 2 sinh ¿)
¿ 2 sinh ¿)+C
(4) Determine the existence and uniqueness of a solution to the initial value problem
y’= cos(xy )
y 1x2 , y (0) =2
Solution:
y’= cos(xy )
y 1x2 , y (0) =2
f(x,y)= cos( xy )
y 1x2
when x=0,y=2 apply values in f(x,y)
f(x,y)= cos( 0)
2 1 = 1
2
hence f(x,y) is continuous at (0,2)
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
f (x , y)
y =
y ( cos ( xy )
y 1x2 )
¿ 1
1x2

x
cos (xy )
y
¿ 1
1x2 [
sin ( xy ) xy
y . y cos ( xy )
y2 ]
¿ 1
1x2 [xysin ( xy ) cos ( xy )
y2 ]
¿ xysin ( xy ) cos ( xy )
y2 1x2
x=0,y=2 apply values in f’(x,y)
f’(x,y) ¿ 0cos ( 0 )
22 10 =1
4
hence f’(x,y) is continuous at (0,2)
Hence this equation has unique solution.
(5) Express the inverse hyperbolic secant function (usually written sech−1, arsech or arcsech) in
terms of the natural logarithm. Note that the domain is (0,1] while the range is [0,∞].
Solution:
sech (x)= 1
cosh ( x) = 2
ex+ ex
y= sech−1 (x)
x= sech (y)= 1
cosh ¿ ¿= 2
e y+ e y
1
x = e y+ e y
2
0=e y +e y 2
x
=¿)e y
=e2 y+ e0 2e y
x
=(e y )22 ( e¿¿ y )
x +1 ¿
Document Page
e y= 1
x + 1x2
x
ln (e y ¿=ln ( 1
x + 1x2
x )
y=ln ( 1
x + 1x2
x )
sech−1 (x)¿ ln ( 1
x + 1x2
x )
(6) Evaluate the integral;

0.5
0.2
1
x 1x2 dx
by making a substitution involving sech(t). Use your answer to question (5) to give the final
answer correct to 4 decimal places. (Hint, why can you not make the simple substitution x =
sech(t) over this domain?)
Solution:

0.5
0.2
1
x 1x2 dx
Put x=sech (t), dx = - sech(t)tanh(t) dt

0.5
0.2 sech ( t) tan (t )
sech (t ) 1sech (t)2 dt
1sech ( t)2= tanh (t)2 =tan (t )

0.5
0.2 sech (t )tan (t )
sech (t ) tan (t ) dt
1 dt= -t =- sech-1 (x) =ln ( 1
x + 1x2
x )

0.5
0.2
1
x 1x2 dx=ln ( 1
0.5 + 10.52
0.5 )ln ( 1
0.2 + 10.22
0.2 )
¿ ln (3.73 ) ln (9.899 ) =ln 3.73
9.899
¿¿0.9760
(7) Consider the double integrals;

0
3 π
4

1
2
er2
rdrdθand
0
4

y
2
ex3
dxdy
Document Page
(a) Sketch the domain of integration in each case.
Solution:
(b) Evaluate the integrals.
Solution:

0
3 π
4

1
2
er2
rdrdθ
= r2=t ; 2 rdr=dt
= 1
2
1
4
et dtdθ
= 1
2
0
3 π
4
(e¿¿ 4¿ e) ¿ ¿
= 3 π
8 (e4 e)

0
4

y
2
ex3
dxdy
changing the order of integration
y :0 ¿ x2
x : 0¿ 2
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
=
0
2

0
x2
ex3
dydx
¿
0
2
ex3
y , 0 , x2 dx
¿
0
2
ex3
x2 dx; put x3=t ,3 x2 dx =dt
¿ 1
3
0
8
et dt
= 1
3 ( e81)
(8) Consider the expression
I=
0
1

0
1 z2

0
z
dxdydz +
0
1

1 z2
1

0
1 y
dxdydz
(a) Determine the value of I by evaluating the iterated integrals given.
Solution:
I=
0
1

0
1 z2

0
z
dxdydz +
0
1

1 z2
1

0
1 y
dxdydz

0
1

0
1 z2

0
z
dxdydz=
0
1

0
1 z2
z dydz
=
0
1
z (1z2 ¿) dz ¿
=
0
1
z2z3 dz
= 1
2 1
4 = 1
4

0
1

1 z2
1

0
1 y
dxdydz=
0
1

1 z2
1
1 y dydz
Put 1-y =u
1 y dy = u du
2u
3
2
3
= 2(1 y )
3
2
3
Document Page

0
1

1 z2
1

0
1 y
dxdydz= 2
3
0
1
z3 dz
= 1
6
I=
0
1

0
1 z2

0
z
dxdydz +
0
1

1 z2
1

0
1 y
dxdydz = 5
12
(b) Rewrite I using the order of integration dy dx dz and evaluate the new expression.
Solution:
I=
0
1

0
z

0
1 z2
dydxdz +
0
1

0
1 y

1 z2
1
dydxdz

0
1

0
z

0
1 z2
dydxdz =
0
1

0
z
(¿¿1z2 ) dxdz ¿ ¿
=
0
1
(1z2 )z dz
=
0
1
z2z3 dz
= 1
2 1
4 = 1
4

0
1

0
1 y

1 z2
1
dydxdz=
0
1

0
1 y
z2 dxdz
=
0
1
z2 ( 1 y ) dz
= 1
3 1 y
I=
0
1

0
z

0
1 z2
dydxdz +
0
1

0
1 y

1 z2
1
dydxdz = 1
4 + 1
3 1 y
(9) Find the volume of the solid enclosed by the paraboloid z − x2 − y2 = −1 and the hemisphere
z= 1x2 y2
Solution:
z − x2 − y2 = −1
x2 + y2 = z +1…………. (1)
z= 1x2 y2
Document Page
z2 =1x2 y2
x2+ y2=¿ 1¿ z2
z+1=1¿ z2
z+z2=0,
z=0, z=-1
R= {r, θ, z |0 r z +1|0 θ π |1 z 0|}
V=
0
π

1
0

0
z+ 1
rdrdzd θ
=
0
π

1
0

0
z+ 1
r2
2 dzd θ= 1
2
0
π

1
0
z +1 dzd θ
= 1
2
0
π

1
0
z2
2 + zd θ= 1
2
0
π
1
2 1 d θ= 1
2
0
π
1
2 d θ
= 1
4 π
Therefore area = π
4
(10)Find the volume of the region between the surface z = 8x+36y and the region D in the x-y
plane indicated in the diagram below.
Solution:

D

8 x+36 y dA
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
inorder ¿ accomplishthis we have to cut section as shown in the figure
D=D1+D2
D1= {(x,y), |0 x 1|, x < y <2 x}
D2={(x,y), |1 x 2|, 3 x2< y <2 x}

D

8 x+36 y dA=
0
1

x
2 x
8 x +36 y dydx +
1
2

3 x2
2 x
8 x +36 y dydx
¿
0
1
8 xy +36 y2
2 dx +
1
2
8 xy +36 y2
2 dx
¿
0
1
16 x28 x2+36 4 x2
2 36 x2
2 dx +
1
2
16 x28 x ( 3 x2 ) + 36 4 x2
2 36 (3 x2)2
2 dx
=
0
1
6 2 x2 dx +¿
1
2
16 x224 x2 +16 x+36 4 x2
2 36 (9 x212 x+ 4)
2 dx ¿
=
0
1
62 x3
3 +
1
2
98 x2+232 x72 dx
= 62
3 +
1
2
98 x3
3 + 232 x2
2 72 x
= 62
3 +784
3 + 928
2 144+ 98
3 232
2 + 72 =-208+420
=212 cubic unit
(11)Evaluate the integral ydV , where V is the solid lying below the plane x+y+z = 8 and
above the region in the x−y plane bounded by the curves y = 1, x = 0 and x = √y.
Solution:
Region R in x-y plane
Document Page
R={(x,y), |0 x 1|,|0 y x2
|}
Volume = ( 8x y ) dA =
0
1

0
x2
( 8x y ) dydx
¿
0
1

0
x2
( 8 yxy y2
2 ) dx
¿
0
1
(8 x2x3 x4
2 )dx
¿
0
1
(8 x3
3 x4
4 x5
10 )
¿ 8
3 1
4 1
10 = 278
120
¿ 2.3166
(12)Consider a solid sphere of radius R, and a solid circular cone of radius R and mass M. Both
objects have the same constant density ρ.
(a) Find the moments of inertia about the axis of symmetry for all three objects.
Solution:
Document Page
dV= πx2 dz
dm= ρ dV since ρ=
M
4 πR3
3
dm= ρ πx2 dz
dI = 1
2 dm x2= 1
2 ρ π x2 dz x2= 1
2 ρ π x4 dz
I=
R
R
1
2 ρ π x4 dz=2
0
R
1
2 ρ π x4 dz
I=ρ π
0
R
x4 dz
x2 =R2-z2
I=ρ π
0
R
( R2z2 )2 dz= ρ π
0
R
R4 2 R2 z2+ z 4 dz
=ρ π
0
R
R4 z 2 R2 z3
3 + z5
5 dz=ρ π [R5 2 R5
3 + R5
5 ]
= 3 M
4 πR3 π [ R5 R5
3 + R5
5 ] =3 M
4 [ R22 R2
3 + R2
5 ]
I= 2 M
5 R2
For cone
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
ρ=
M
πR2 L
3
dV= πy2 dx
dm= ρ dV = ρ πy2 dx
dI = 1
2 dm y2 = 1
2 ρ π y4 dx
I=
0
L
1
2 ρ π y4 dx where, y= R
L x
I=
0
L
1
2 ρ π ( R
L x)
4
dx= 1
2 ρ π ( R
L )
4

0
L
( x ) 4 dx=¿ 1
2 ρ π ( R
L )
4

0
L ( x )5
5 ¿
= 1
2 ρ π ( R
L )
4 (L)5
5 = 1
10 ρ π R4 L
I= 1
10
3 M
πR2 L π R4 L= 3
10 MR2
(b) Suppose the objects have the same moments of inertia. Find h and M.
Solution:
Since moment of inertia of both objects are same,
There for I sphere=I cone
2
54
3 π R3R2=
3
10 1
3 π R2 hR2
8 R
15 = h
10
Document Page
h=16 R
3
(c) Given the assumptions in part (b), which is heavier, the cone or the sphere?
Solution: Sphere is heavier since it has high M.I
(13) Consider a torus whose equation in terms of spherical coordinates (r,θ,φ) is r = 2sinφ for 0 ≤
φ ≤ π and 0 ≤ θ ≤ 2π. Determine the mass of the region bounded by the torus if the density is
given by ρ = φ.
Solution: v= 2 π 2 (r2 ¿ ( xR ) 2 )dx ¿
=4π
Rr
r + R
2 ( r2 ( xR )2 )dx
Pu u= x-R
=4π
r
r
(u+ R) r2 u2 du
=4π
r
r
u r2 u2 du+4π
r
r
R r2 u2 du
=0+4π
r
r
R r2 u2 du =4π R π r 2
2
v= 2 R π2 r2=2 R π2 (2 sin φ)2
ρ = φ= mass / volume
mass=density× volume =8 R π 2 (sin φ)2× φ
(14) Using spherical coordinates, evaluate the integral

0
1

1 y2
1 y2

x2+ y2
2 x2 y2
yzdzdxdy
Solution:
z= 2x2 y2
z= x2+ y2
0 r 2
x2+ y2 =a=r cos
r cos =rsin
tan=1
= π
4
Document Page
The limits are,
0≤x≤1
-1 y2≤x≤1 y2
π
2 ≤θ≤ 3 π
2
In spherical limits,
0≤ π
4
π
2 ≤θ≤ 3 π
2
0≤r≤ 2

0
1

1 y2
1 y2

x2+ y2
2 x2 y2
yzdzdxdy=
0
π
4

π
2
3 π
2

0
2
(rsin sinθrcos )rsin drdθd
=
0
π
4

π
2
3 π
2

0
2
r3 sin2 cos sinθdrdθd
¿
0
π
4

π
2
3 π
2
r 4
4 sin2 cos sinθ dθd , 0 , 2
¿
0
π
4

π
2
3 π
2
sin2 cos sinθdθd
¿
0
π
4
sin2 cos cosθ , π
2 , 3 π
2 ,d
=
0
π
4
sin2 cos 0 d
=0
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
chevron_up_icon
1 out of 20
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]