Solutions for Q6-Q10

Verified

Added on  2023/04/21

|8
|1697
|82
AI Summary
Get detailed solutions for Q6-Q10 on Desklib. Find step-by-step explanations and answers for your assignments and study material. Improve your understanding and grades with Desklib.

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Solutions
Q6)
Moment generating function of Y =
i=1
n 1
i X I is equivalent to;
MY(t) = E(etY ) = E(et

i=1
n 1
i Xi) = E(i=1
n
e
1
i tXi
)
Therefore,
E( i=1
n
e
1
i tXi
) =i=1
n
E ( et i¿ Xi ) since Xi’is independent and ti* = t
i
Hence,
=
i=1
n

0

et i¿ x e x dx=
i=1
n
( 1
1t i¿ )= 1
( 1t ) (1 t
2 )(1 t
3 ) . (1 t
n )
et as n
PDF of Vn is
fVn(v) = n(1- e x ¿n-1
e x , x>0, 0 otherwise
Moment generating function of Vn is
MV n(t) = E ( eVt ) =
0

ext n ( 1ex ) n1
dx
Take y = e-x
= n
0
1
yt ( 1 y ) n 1 dy
= n Г (t+ 1) Г (n)
Г (n+ t+1) = n !
( n+t ) ( n+t 1 ) (t+1) = 1
(1+ t
n )(1+ t
n1 )(t +1)
et as n

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Therefore, the distribution of Vn and Y are same
Q7)
The characteristic function of a random variable X is defined as ϕ(t) = E(eitX)
φ(t) =
0

( eitu ) dF(u)
φ(t) =
0

( eitu ) f (u)du
Given X > 0, the characteristic properties function will be;
φ ( 0 )=1
dn φ(t )
d tnt=0 =E ( Xn )
φn ( t )=E ( Xn )
Let’s take the new characteristic function to be represented as;
φn(t) =
0

φ ( tu ) dF (u)
φn(t) =
0

φ ( tu ) f (u)du
Showing the characteristic function satisfies all the conditions of non-negative random variable
φn(t) =
0

φ(tu)dF (u)
φn(t) =
0

φ(tu)f (u)du
Document Page
Differentiating the second new characteristic function above
φn(t) = d
dt
0

φ(tu )f (u)du
φn(t) = d
dt
0

φ(tu )uf (u) du
Therefore, the derivative of the characteristic function at any order ‘m’ will be represented as;
φnm(t) = dm
d tm
0

φ ( tu ) f ( u ) du
φnm(t) =
0

φ ( u ) um f ( u ) du
At t = 0, the characteristic function will be equivalent to;
φ ( 0 )=
0

φ ( 0 ) dF (u)
φ ( 0 ) =
0

(1)f (u)du
φ ( 0 )=1
At t = 0, at derivative order ‘m’ the characteristic function be equivalent to;
φnm(0) =
0

φ ( 0 ) um f ( u ) du
Substituting, φ ( 0 )=1
φnm(0) =
0

(1)um f ( u ) du
φnm(0) =
0

um f ( u ) du
φnm(t) = E ( Um )
It should be noted that Um >0
Document Page
Therefore, φ ( t ) =
0

etu f ( u ) du will satisfies all the function of a random variable
Q8)
The probability distribution
Xn -n 0 n
P(Xn) 1
2nln (n) 1 - 1 1
nln(n)
1
2nln(n)
E(Xn) = xnP(Xn)
Sn = 1
n
k=l
n
Xk = 1
n
k=2
n
Xk
= n ( 1
2 nln ( n ) )+o x (1 1
ln ( n ) )+ n( 1
2 nln(n))
E(Xn) = 1
2 ln ( n ) + 1
2 ln ( n)
E(Xn) = 0
V(xn) = E(xn2) – (E(xn))2
= xn2P(xn)
= (-n)2( 1
2nln(n) ¿+02
(1 1
nln ( n ) )+n2 ( 1
2 ln ( n ) )
= n2 1
2nln(n)+ n2 ( 1
2nln (n) )
= n
2 ln ( n ) + n
2 ln ( n )
E(xn2) = 2 n
2 ln ( n ) = n
ln ( n )

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
V(xn) = n
ln ( n ) ( 0 )2
V(xn) = n
ln ( n )
Let Sn = n and Bn = V(Sn)
E(Sn/n) = 1
n E ¿n) = 1
n E ¿k)
= n
n E ¿k)
E(Sn/n) = 0
Bn = V(Sn) = V(
k =2
n
Xk) = nV(Xk) = nn
ln ( n ) = n2
ln ( n )
Therefore if,
P
[|Sn
n ( Sn )
n |> ] 0 as n
Provided Bn/n2 0 as n
Therefore,
B n/n2 = n2
n2 ln ( n ) = 1
ln ( n )
1
ln ( n ) 0 as n
Therefore,
P
[|Sn
n (Sn)
n |> ] 0 as n
p[|Sn
n 0|> ] 0 as n
if Sn/n p

0
Document Page
Sn/n = 1
n
k=2
n
Xk
1
n
k=2
n
Xk0

0
Therefore, Show that this sequence satisfies the weak law of large numbers but not the strong
Q9)
For n 2
E(x1) = 1
Are bounded real numbers
Therefore,
E(Xk) = 1 k = 1,2
Xk p

1
If Xk p

1 then Xk as

1
E(Xk) is constant
Now
w|
k =2
n ak Xk (w)
n

k=2
n
ak
n ¿ since xk(w) 1 as k
w¿
k=2
n
ak
Xk (w)
n
k=2
n ak
n 1
The probability of this expression will be represented as;
P{W
k=2
n akXk (N )
n 1}=1
Document Page
Therefore,
k =2
n
akXk as

1
Making 1
n the subject of the equation, then;
1
n =
k=2
n
akXk 1
Q10)
Given that = f ( x ) =
{ 1
2 ,0 x 1
1 1
2 x ,x 1
For all real values x except x = 0, therefore the pdf of x can be obtained by just differentiating
cdf other than x = 0, hence
Fx(x) = ¿
Fx(x) =
{ 1
2 0 x=0

2 x ( + 1 ) x 1
0 otherwise

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
=
{ 1
2 ; x=0

2 x+1 ; x 1
E ( x2 ) = ( 0 ) 21
2 +


x2¿
2 x ( +1 ) dx ¿
=
1


2 x ( +1 ) dx=
2 [ x+1+1
+1+1 ] at the limits of ¿ 1
=
2(2) [ 1
x2 ] at the limit of ¿ 1
=
2(2) [ 1
2 1
12 ]
=
2(2) (0 1
1 )
=
2(2) , if 2 - >0 ,if 2>
E ( x )= 01
2 +
1

x
2 x1 dx=
2
1

xdx
=
2 [ x+1
(+1) ] for the limit ¿ 1
=
2(1) [0 1
11 ] for 1 - >0 , 1> =1 ,<1
Therefore, E ( x ) if b <1 ( x2 ) exist if <2
Then V(x) = E ( x2 ) ( E ( x ) )2 exist when <1 ,<2 if <3
Hence the central limit exist, when random variable have finite mean and finite variance which
implies CLT exists when 0 < <1
1 out of 8
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]