Differentiating the Equation Solution 2022

Verified

Added on  2022/09/07

|6
|330
|20
AI Summary
tabler-icon-diamond-filled.svg

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Solutions
Solution-B1
(a) (i) By shifting property,
L (eatf ( t ) )=F (sa)
(ii) L (
0
t
[ f (u )e2 ucos ( 3 u ) ] du )
¿ L ¿
As L [ cos ( at ) ] =s /(s2+ a2) then by using shifting property and Laplace transform of
integrals, the Laplace transform is
¿ F ( s )
s ( s (2 ) )
s ( s (2 ) )2 + ( 3 )2 ¿ ¿= F ( s )
s ( s+ 2 )
s ( ( s +2 )2+ 9)
(b) For 0 t<2 , f ( t ) =4t2for t 2 , f ( t ) =0
So, f(t) can be written as
f ( t )= ( 4t2 ) ( u ( t )u ( t2 ) )
As u ( t )=1 for t 0u ( t2 )=1 for t 2

For 0 t<2 , u ( t ) u ( t2 )=10=1
For t 2 ,u ( t )u ( t2 ) =11=0
L ( ( 4t2 ) ( u ( t ) u ( t2 ) ) ) =L ( 4 u ( t ) )L ( 4 u ( t2 ) ) L ( t2 u ( t ) ) + L ( t2 u ( t2 ) )
Let t 1=t2 ,
so , t2 u ( t2 ) can be written as (t 1+2 )2 u ( t 1 )
L ( 4 u ( t ) ) L ( 4 u ( t2 ) ) L ( t 2u ( t ) ) + L ( (t 1+2)2 u ( t 1 ) )
¿ L ( 4 u ( t ) )L ( 4 u ( t2 ) )L ( t2u ( t ) )+ L ((t 12 +2 t 1+4 )u ( t 1 ) )
¿ 4
s 4
s e
2 s
2
s3 e2 s
( 2
s3 + 4
s2 + 4
s )
¿ 4
s (12 e2 s ) + 4
s2 e2 s 2
s3 (1+e2 s )
(c ) L1 ¿
Decomposing the given rational expression into partial fractions,
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
2 s +3
( s¿¿ 2+ 4)(s¿¿ 2+9)= As+ B
s2 +4 + Cs+ D
s2 +9 ¿ ¿
Equating coeff of s3, s2 , sconstant terms
A+C = 0
B+D = 0
9A+4C = 2
9B+4D = 3
Solving for A, B, C and D, we get A = 2/5, B = 3/5, C=-2/5, D=-3/5
= L1
( 1
5 (2 s+3
s2+4 2 s +3
s2 +9 ) )
= L1
( 2
5 ( s
s2+4 )+ 3
5 ( 1
s2 +4 ) 2
5 ( s
s2+ 9 )3
5 ( 1
s2 +9 ) )
Since L1
( s
s2 +a2 )=cos (at) and L1
( a
s2 +a2 ) =sin ( at), so, the L1 of the expressionis
¿ 1
5 [2 cos (2 t)+ 3
2 sin (2 t)2cos (3 t)sin ( 3 t ) ] Ans.
(d )¿ z1¿ 2 , arg(z1 ¿=π
3 =¿ z1=2¿
z2 = e /3 => ¿ z2¿ 1
z3=2+2 3i
z1+ p¿ z2 ¿
z3
=
2 ( 1
2 +i ( 3
2 ) ) + p
2(1+ 3 i) ¿
¿ [ ( 1 3 i )+ p ]
2(1+ 3 i) *(1 3 i)
(1 3 i)
¿ (13+ p2 3i p 3 i)
8
For the expression to be purely imaginary, real part should be zero i.e.
1-3+p = 0 => p = 2
Ans. p = 2
(e) xyez + y z3ln ( x +z )=7
Document Page
Differentiating the eqn. wrt y gives,
x(y ez z
y +ez ¿+(3y z2 z
y + z3 ¿ 1
( x+ z )
z
y =0
z
y = x ez + z3
xy ez +3 y z2 1
( x + z )
Solution- B2
(a) z=f ( u )
z
x =f ' ( u )u
x =f ' ( u )2 x y3
2 z
x2 =
x ( f ' ( u )2 x y3 )=2 y3
[ xf ' ' (u ) u
x + f ' ( u ) ]
¿ 2 y3 [ xf ' ' ( u )2 x y3 +f ' ( u ) ]
z
y =f ' ( u ) u
y =f ' ( u )3 x2 y2
2 z
y2 =
y ( f ' ( u )3 x2 y2 )=3 x2
[ y2f ' ' ( u ) u
y +f ' ( u )2 y ]
¿ 3 x2 [ y2f ' ' ( u )3 x2 y2+ f ' ( u ) .2 y ]
¿ 9 x4 y4f ' ' ( u ) + 6 x2 y . f ' (u)
2 z
x y =
x ( z
y )=
x [ f ' ( u )3 x2 y2 ]
¿ 3 y2 [f ' ( u )2 x+x2f ' ' ( u )u
x ]
¿ 3 y2 [ f ' (u )2 x+ 2 x3 y3f '' (u ) ]
¿ 6 x y2f ' ( u ) +6 x3 y5f ' ' ( u )
Therefore,
6 y2 2 z
x2 y2 2 z
y2 ¿ xy 2 z
x y
¿ 6 y2 [2 y3 [ xf ' ' ( u )2 x y3 + f ' ( u ) ] ] y2 [9 x4 y4f ' ' ( u ) +6 x2 y . f ' (u)]¿
xy [6 x y2f ' ( u ) +6 x3 y5f ' ' ( u ) ]
¿ 9 x4 y6f ' ' ( u ) Ans
Document Page
(b) F(x,y,z) = x2 y z3+ln (xz )
Max rate of change of a function at point (a, b, c) is the magnitude of the gradient at
the point i.e.
| f ¿ (f ¿ ¿ x ( a , b , c))2 +¿ (f ¿¿ y ( a , b , c))2+(f ¿¿ z(a , b , c))2 ¿ ¿ ¿ ¿
¿ (2 xy z3 +1/ x)2 +¿ x4 z6+(3 x2 y z2 +1/ z )2 ¿
At ( 1, 1 , 2 )
| f ¿ ( 17 )2+ ¿ 164+ ( 12.5 )2 = 509.25=22.5666 ¿ Ans
(c ) f ( x , y , z ) =4 xz +7 yz+ xy
xyz=756 -----------(1)
F ( x , y , z , λ )=f ( x , y , z ) λ ( g ( x . y . z )K )
¿ 4 xz+7 yz+ xy λ(xyz 756)
Fx=4 z+ yλyz=0
F y=7 z + xλxz=0
Fz =4 x +7 y λxy=0
Fλ=xyz +756=0
λ= 4
y + 1
z
λ= 7
x + 1
z
λ= 4
y + 7
x
Solving for x, y, z , we get
x=7 z , y =4 z
Putting these values in (1)
( 7 z ) ( 4 z ) ( z ) =756
z=3
So, x=21 , y=12 , z =3
Therefore, f min=4213+7123+2112=756 Ans
Solution-A4
(a) |z|+|z i|=2
z=x +iy
x2+ y2 + x2+( y1)2 = 2
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
¿ , x2 + y2=2 x2 +( y1)2
Squaring both sides, we get
x2+ y2=4 + x2+( y1)222 x2+( y1)2
2 y5=4 x2 +( y 1)2
4 y2 +2520 y =16 x2 +16 y232 y +16
Or, 16 x2+12( y ¿¿ 2 y )9=0 ¿
Comparing with standard eqn.
a x2+2hxy + b y2+2 gx+ 2 fy +c=0
we have, a = 16, 2h = 0, b = 12, 2g = 0, 2f = -12 => f= -6, c= -9
= abc +2 fgha f 2b g2c h2= ( 16129 )16144 0
2h*2h – 4ab = 0 - 4(16*12) < 0 and a c
Therefore, locus of z is the equation of an ellipse.
Solving further, the equation of the ellipse comes out as
x2
¿ ¿ ¿
(b) w= ( S+1 ) e=u+iv
z=x +iy
z +i w=0
xiy+i(uiv)=0
x +v =0=¿ x=v
y=u=¿ y =u
z=x +iy=v +iu=i ( u+iv ) =iw=( S+1)e e/ 2 as i=¿ e /2
arg ( zw )=θ+θ+ π
2 =2 π
3
As π θ< π,
Document Page
θ=
2 π
3 π
2
2 = π
12 , (π + π
12 )=¿ θ= π
12 ,11 π
12
Ans
chevron_up_icon
1 out of 6
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]