This document contains solutions for Statistics Assignment 9. It includes confidence intervals, hypothesis testing, and probability distributions. Subject: Statistics, Course Code: 630, Course Name: Not mentioned, College/University: Not mentioned
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
Statistics 630 - Assignment 9 (due Thursday, April 4, 2019, 8am CDT) Name ________________________________________________ Email Address ___________________________________________________________ Statistics 630 - Assignment 9 (due Thursday, April 4, 2019, 8am CDT) 6.3.1) Based on given data Sample size = n = 10 Sample mean = [4.7+ 5.5+ 4.4 + 3.3+4.6 +5.3+5.2+ 4.8+ 5.7+ 5.3]/10 = 4.88 Sample standard deviation X[x-mean]2 4.70.0324 5.50.3844 4.40.2304 3.32.4964 4.60.0784 5.30.1764 5.20.1024 4.80.0064 5.70.6724 5.30.1764 Total = 44.8Total = 4.356 Mean = 44.8/10 = 4.48 Variance = 4.356/9 = 0.484 s.d =√0.484= 0.6957 To test H0:μ=5 H1:μ≠5
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
a)95% confidence interval forμ xZ∗ √s.d n−¿ +¿¿¿ 4.881.96∗√0.5 10−¿ +¿¿¿ =4.880.4383−¿+¿¿¿ 4.4417 <μ< 5.3183 b)forσunknown 95% confidence interval forμis xt∗s.d √n−¿ +¿¿¿ 4.882.2622∗0.6957 √10−¿ +¿¿¿ 4.880.4977−¿+¿¿¿ 4.3823 <μ< 5.3777 6.3.8) To test: Test statistic: z=^θ−θ0 √θ0(1−θ0) n N(0,1)͠ H0 Where, n: sample size ^θ:Sample proportion θ0: Hypothesize population proportion We reject the null hypothesis or H0if the observed value of |z| > Zα/2, where,∝=0.10 Now,^θ=0.62,θ0= 0.65, n = 250 The observed value of the test statistic is:z = -0.99 The critical value: Zα/2= 1.645
Now, z = -0.99 < 1.645 Thus weacceptthe null hypothesis or H0. Hence we do not have sufficient evidence to suggest that the proportion of voters in a given population is not equal to 0.65. The 90 % confidence interval for the population proportionis: ^θz¿ (√^θ(1−^θ) n)−¿ +¿¿¿ , Where,is the multiplier Here,z¿=1.645,^θ=0.62,n=250 Lower limit:0.5695 Upper limit:0.6705 The 90 % confidence interval for the population proportionθis: (0.5695, 0.6705) 6.5.1) N(μ0,σ2¿whereμ0is known andσ2is known andθϵ(0,∞)isunknown Therefore,XN(μ0,σ2¿ The PDF is given asf(x,μ0,σ2)=1 σ√2π∗e −1 2(x−μ0 σ) 2 ,∞<x−μ0<∞,σ2>0…….eq1 To find fisher informationI(σ2) I(σ2)=f(x,σ2)=E[−∂2logf(x,σ2) ∂2σ2] Taking log on both side by eq(1), we get logf(x,σ2)=−log√2π−logσ−1 2(x−μ0 σ) 2 Differentiatingσ2weget ∂logf(x,σ2) ∂σ2=−0−1 σ−(x−μ0 σ)2 (−2σ−3) ∂logf(x,σ2) ∂σ2=−1 σ+(x−μ0)2 σ3
L(x:θ)=θnα0 ⌈α0¿¿ Log L = c + nα0logθ−θ∑xI+¿0-1)∑ i=1 n logxi ∂logL ∂θ=nα0 θ−∑xI= 0 nα0 θ=∑xi ^θ=nα0 ∑xi=nα0 nx Therefore, ^θ=α0 xis MLE ∂2logL ∂θ2=−nα0 θ2 −E(∂2logL ∂θ2)=−E(−nα0 θ2) =n∝0 θ2 I(θ)=1 −E(∂2logL ∂θ2) I(θ)=θ2 nα0 6.5.3) From Pareto distribution PDF it is given by f(x,α)=αx0αx-α – 1, x≥x0
Taking log on both side gives I(α)=−E[∂2 ∂α2f(x,α)] =1 α2 Therefore, In(α¿=¿(α) =n α2 6.5.4) The pivot for,λ=λ−λ √λ √λ Poisson distribution mean =λ=x =1 n∑x =1 20(1.93) = 9.65 The estimated mean,λ=λ=9.65 The standard deviation =√λ=√9.65= 3.106 Construction of the 95% confidence interval [λ−z∗(λ √n),λ+z∗(λ √n)] Z*0.05= 1.645 95% confidence interval based on pivot sample =[9.65−1.645(3.106 √20),9.65+1.645(3.106 √20)]
= (9.65 – 1.1143, 9.65 + 1.143) = (8.507, 10.793) 6.5.5) Based theorem of central limit, Let Xi, I = 1, 2, … n be a sequence of i.i.d distributed random variable with meanμ=1 λand varianceσ2=1 λ2 For large n, Y =∑xI N n λ,n λ2 Therefore, Y, which is Gamma(n,λ¿,willhaveanormalapproximationforlargenvalue Here estimating^λ=1 x Where,x=1 n∑xI=43991.75 27=1627.4722 λ=1 λfrom the method of moment estimator ^λ=1 1627.4722= 0.0006145 Gamma(α,λ¿N(α λ,α λ2) N(2 0.0006145,2 0.00061452¿ 90% confidence interval for mean 0.90 = (-1.6449 < N(0, 1)) < 1.6449) 0.90(-1.6449 <μ−μ σ/√n<1.6949¿
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
0.90 = (-1.6449 <3254.94−μ 442.9<1.6449¿ 2526.34 <μ<3983.53 6.5.6) Whenα=1 Therefore, Gamma(1, λ)N(1 λ,1 λ2) Therefore, N(1 0.0006145,1 0.00061452¿ 90% confidence interval for mean 0.90 = (-1.6449 < N(0, 1)) < 1.6449) 0.90(-1.6449 <μ−μ σ/√n<1.6949¿ 0.90 = (-1.6449 <1627.47−μ 313.2071<1.6449¿ 1112.27 <μ<2142.66 6.2.5) X1,…, xnis a random sampleGamma¿0,θ¿distribution α0> 0 is known andθϵ(0,∞)isunknown f(x:α0,β)=θα0 θα0⌈α0¿¿, x > 0 The likelihood function is
L(θ)=1 θnα0[⌈α0¿¿¿¿n¿∏ i=1 n {xα0−1 }e −∑xi θ Log L = - nα0logθ−nlog⌈(α0)¿¿I+¿0-1)∑ i=1 n logxI-∑xi θ ∂logL(θ) ∂θ=−nα0 θ− ∑ i=1 n xi θ2 = 0 θnα0=∑ i=1 n xi ^θ= 1 α0∗1 n∑ i=1 n xi ^θ=x α0, wherex=1 n∑ i=1 n xi Henceθisconsistence 6.2.12) X1, X2,…., XnN(μ.σ2) i.i.d,μ=μ0=known Unbiased =1 σ√2π∗e −1 2σ2∑ i=1 n (xi−μ0)2 , 1 -α<x<∞ lnL = -nlnσ−nln√2π−1 2σ2∑ i=1 n (xi−μ0)2 ∂lnL ∂σ=−n σ+1 σ3∑ i=1 n (xi−μ0)2 ^σ2=1 n∑ i=1 n (xi−μ0)2= MLE ofσ2 Change in MLE in location scale model Unbiased =1 σ√2π∗e −1 2σ2∑ i=1 n (xi−μ0)2 , 1 -α<x<∞
μ=unknown lnL = -nlnσ−nln√2π−1 2σ2∑ i=1 n (xi−μ0)2 ∂lnL ∂μ=1 2σ2∗2∑ i=1 n (xi−μ)=0 ^μ=1 n∑ i=1 n xi=x= MLE ofμ Putting^μin place ofμ ∂lnL ∂σ=−n σ+1 σ3∑ i=1 n (xi−x)2 ^σ2=1 n∑ i=1 n (xi−x)2= MLE ofσ2 Henceσ2is consistence In problem 6.2.12 Asymptotic distribution of MLE is normal AsγlogL γσ2isconsistent solution of likelihood function and is asymptotically distributed with mean 0 and variance =1 I(θ)=1 n∑ i=1 n (xi−μ0)2 So, σ2N(0,1 n∑ i=1 n (xi−μ0)2 )