Statistics Assignment-2 (Weeks: 5-7) | Desklib
VerifiedAdded on 2023/06/03
|8
|959
|429
AI Summary
This is the solution to Statistics Assignment-2 (Weeks: 5-7) for the 1st Semester, 1439-1440 (2018-2019) at CSTS-SEU-KSA. The assignment covers probability distribution, variance, binomial distribution, normal distribution, confidence interval for population proportion and confidence interval for population mean. The solution is provided with step-by-step calculations and formulas used.
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
CSTS-SEU-KSA
___________________________________________________________________
Statistics (STAT-101)
Assignment-2 (Weeks: 5-7)
1st Semester, 1439-1440 (2018-2019)
Due date: 20/10/2018 (Time: 10:30 PM)
Student’s Name
Student’s ID
Section/CRN
Location
Marking Scheme
Question Score Obtained Score
Q-1 3
Q-2 3
Q-3 3
Q-4 3
Q-5 3
Q-6 3
Total 18
Note: You are required to fill your full name, ID and CRN.
Solution to the Questions
___________________________________________________________________
Statistics (STAT-101)
Assignment-2 (Weeks: 5-7)
1st Semester, 1439-1440 (2018-2019)
Due date: 20/10/2018 (Time: 10:30 PM)
Student’s Name
Student’s ID
Section/CRN
Location
Marking Scheme
Question Score Obtained Score
Q-1 3
Q-2 3
Q-3 3
Q-4 3
Q-5 3
Q-6 3
Total 18
Note: You are required to fill your full name, ID and CRN.
Solution to the Questions
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
CSTS-SEU-KSA
Question One
a. Probability distribution table for the random variable
Solution
Type of a Coin Frequency
f
Probability
p= f
∑ f
$ 1 2 0.22
$ 5 3 0.33
$ 10 1 0.11
$ 20 3 0.33
Total(∑) 9 1.00
b. Variance.
According to Hassett & Stewart (2006), the variance is given by the formula
Var ( x )=E ( x2 )−¿ ¿
¿ ∑ x2 ¿ px− ( ∑ x∗px )
2
The table below summarizes the result of the computation
Type of a Coin Frequency
f
x=coin $∗f Probability
px
x∗px x2∗px
$ 1 2 2 0.22 0.444 0.889
$ 5 3 15 0.33 5.000 75
$ 10 1 10 0.11 1.111 11.111
$ 20 3 60 0.33 20.000 1200
Total(∑) 9 1.00 26.556 1287
Question One
a. Probability distribution table for the random variable
Solution
Type of a Coin Frequency
f
Probability
p= f
∑ f
$ 1 2 0.22
$ 5 3 0.33
$ 10 1 0.11
$ 20 3 0.33
Total(∑) 9 1.00
b. Variance.
According to Hassett & Stewart (2006), the variance is given by the formula
Var ( x )=E ( x2 )−¿ ¿
¿ ∑ x2 ¿ px− ( ∑ x∗px )
2
The table below summarizes the result of the computation
Type of a Coin Frequency
f
x=coin $∗f Probability
px
x∗px x2∗px
$ 1 2 2 0.22 0.444 0.889
$ 5 3 15 0.33 5.000 75
$ 10 1 10 0.11 1.111 11.111
$ 20 3 60 0.33 20.000 1200
Total(∑) 9 1.00 26.556 1287
CSTS-SEU-KSA
Therefore,
¿ ∑ x2 ¿ px− ( ∑ x∗px )
2
=1287− ( 26.556 ) 2
¿ 1287−705.198=581.802 .
Therefore, the variance is $ 581.80
Question Two
Solution
The probability of interest isP rob ( x ≥3 )=1−P ( x <3 )
The distribution of the 5 students adopts binomial distribution with probability of
success ( p ) of an event been 0.13 and that of failed ( q ) event is 0.87. The number of
independent trials ( n ) is 5 and the number of success 3or more ( r )
According to Hassett & Stewart (2006), the probability of success in a binomial
distribution is given by
P rob ( x=r ) = [ n
r ] ( p ) r ( q ) n−r
Therefore,
P rob ( x ≥3 ) =1−P rob ( x<3 )
¿ 1− {P rob ( x=0 ) + P rob ( x=1 )+ P ( x=2 ) }
Therefore,
¿ ∑ x2 ¿ px− ( ∑ x∗px )
2
=1287− ( 26.556 ) 2
¿ 1287−705.198=581.802 .
Therefore, the variance is $ 581.80
Question Two
Solution
The probability of interest isP rob ( x ≥3 )=1−P ( x <3 )
The distribution of the 5 students adopts binomial distribution with probability of
success ( p ) of an event been 0.13 and that of failed ( q ) event is 0.87. The number of
independent trials ( n ) is 5 and the number of success 3or more ( r )
According to Hassett & Stewart (2006), the probability of success in a binomial
distribution is given by
P rob ( x=r ) = [ n
r ] ( p ) r ( q ) n−r
Therefore,
P rob ( x ≥3 ) =1−P rob ( x<3 )
¿ 1− {P rob ( x=0 ) + P rob ( x=1 )+ P ( x=2 ) }
CSTS-SEU-KSA
P rob ( x=0 )= [5
0 ] ( 0.13 )0 ( 0.87 )5−0= ( 0.87 )5=0.498
P rob ( x=1 ) =
[ 5
1 ] ( 0.13 )1 ( 0.87 ) 5−1=5∗0.13∗( 0.87 ) 4=0.372
P rob ( x=2 ) =[ 5
2 ] ( 0.13 ) 2 ( 0.87 )5 −2 =5∗0.0169∗( 0.87 )3 =0.111
Thus,
1− { P rob ( x=0 ) + P rob ( x=1 ) + Prob ( x=2 ) } =1− {0.498+ 0.372+ 0.111 }
¿ 0.01 8
Hence, P rob ( x ≥3 )=0.018
Question Three
Solution
The answer will be obtained from the normal distribution tables
a. P rob( z< 2.37)
P rob ( z <2.37 )=0.991 1
b. P rob(z>−1.18)
P rob ( z >−1.18 )=1−P rob ( z <−1.18 )
¿ 1−0.119=0.881
P rob ( x=0 )= [5
0 ] ( 0.13 )0 ( 0.87 )5−0= ( 0.87 )5=0.498
P rob ( x=1 ) =
[ 5
1 ] ( 0.13 )1 ( 0.87 ) 5−1=5∗0.13∗( 0.87 ) 4=0.372
P rob ( x=2 ) =[ 5
2 ] ( 0.13 ) 2 ( 0.87 )5 −2 =5∗0.0169∗( 0.87 )3 =0.111
Thus,
1− { P rob ( x=0 ) + P rob ( x=1 ) + Prob ( x=2 ) } =1− {0.498+ 0.372+ 0.111 }
¿ 0.01 8
Hence, P rob ( x ≥3 )=0.018
Question Three
Solution
The answer will be obtained from the normal distribution tables
a. P rob( z< 2.37)
P rob ( z <2.37 )=0.991 1
b. P rob(z>−1.18)
P rob ( z >−1.18 )=1−P rob ( z <−1.18 )
¿ 1−0.119=0.881
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
CSTS-SEU-KSA
Thus, P rob ( z >−1.18 )=0.881
c. P rob(−1.18< z <2.37)
P rob (−1.18< z<2.37 )=P rob ¿
¿ 0.991 1−0.119=0.8721
Hence, P rob (−1.18< z<2.37 )=0.8721
Question Four
Solution
The probability of interest is P rob ( x ≥7.995 )=1−P rob ( x <7.995 )
From the data given, the population mean ( μ ) =8.025 and
Population standard devition ( σ )=0.125
The probability will be computed by using z-scores
In this case, he z-score will be given by the formula
z= x−μ
σ
√ n
, where n=sample ¿ 36
1−P rob ( x<7.995 ) =1−P rob
{z < 7.995−8.025
0.125
√ 36 }
¿ 1−P rob {z < −0.03
0.02083 }=1−P rob { z ←1.44 }
¿ 1−0.0749=0.925 1
Thus, P rob ( z >−1.18 )=0.881
c. P rob(−1.18< z <2.37)
P rob (−1.18< z<2.37 )=P rob ¿
¿ 0.991 1−0.119=0.8721
Hence, P rob (−1.18< z<2.37 )=0.8721
Question Four
Solution
The probability of interest is P rob ( x ≥7.995 )=1−P rob ( x <7.995 )
From the data given, the population mean ( μ ) =8.025 and
Population standard devition ( σ )=0.125
The probability will be computed by using z-scores
In this case, he z-score will be given by the formula
z= x−μ
σ
√ n
, where n=sample ¿ 36
1−P rob ( x<7.995 ) =1−P rob
{z < 7.995−8.025
0.125
√ 36 }
¿ 1−P rob {z < −0.03
0.02083 }=1−P rob { z ←1.44 }
¿ 1−0.0749=0.925 1
CSTS-SEU-KSA
Therefore, P rob ( x ≥7.995 )=0.9251
Question Five
Solution
According to Goos & Meintrup (2016), the confidence interval for the population proportion
( ^pu ) is given by
^pu= ^p ± z∗
√ ^p ( 1− ^p )
n ,
where n=sample=150 , ^p=sample proportion= 60
150 =0.4 0
z=multiplier ¿ z table=1.96 at 95 %
^pu=0.4 ±1.96∗
√ 0.4 ( 1−0.4 )
150 =0.4 ± 1.96∗ √ 0.24
150
¿ 0.4 ± 1.96∗0.04=0.4 ± 0.078 4
Therefore the confidence interval for the population proportion cholesterol level of 200 is
(0.3216, 0.4784).
Question Six
Therefore, P rob ( x ≥7.995 )=0.9251
Question Five
Solution
According to Goos & Meintrup (2016), the confidence interval for the population proportion
( ^pu ) is given by
^pu= ^p ± z∗
√ ^p ( 1− ^p )
n ,
where n=sample=150 , ^p=sample proportion= 60
150 =0.4 0
z=multiplier ¿ z table=1.96 at 95 %
^pu=0.4 ±1.96∗
√ 0.4 ( 1−0.4 )
150 =0.4 ± 1.96∗ √ 0.24
150
¿ 0.4 ± 1.96∗0.04=0.4 ± 0.078 4
Therefore the confidence interval for the population proportion cholesterol level of 200 is
(0.3216, 0.4784).
Question Six
CSTS-SEU-KSA
Solution
According to Goos & Meintrup (2016), the 95% confidence interval of the population mean ( μ )
is constructed by the formula;
μ= x ± z∗σ
√n , where x=smaple mean=7.10 , n=sample ¿200
z=multiplier ¿ z table=1.96 at 95 %∧σ= population standard deviation
¿ 7.10 ± 1.96∗5
√200 =7.10 ±1.96∗0.353 6
¿ 7.10 ± 0.693
Therefore, the 95% confidence interval for μ is ( 6.407 , 7.793 )
Solution
According to Goos & Meintrup (2016), the 95% confidence interval of the population mean ( μ )
is constructed by the formula;
μ= x ± z∗σ
√n , where x=smaple mean=7.10 , n=sample ¿200
z=multiplier ¿ z table=1.96 at 95 %∧σ= population standard deviation
¿ 7.10 ± 1.96∗5
√200 =7.10 ±1.96∗0.353 6
¿ 7.10 ± 0.693
Therefore, the 95% confidence interval for μ is ( 6.407 , 7.793 )
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
CSTS-SEU-KSA
Reference
Goos, P., & Meintrup, D. (2016). Statistics with JMP: Hypothesis Tests, ANOVA and
Regression. John Wiley & Sons.
Hassett, M. J., & Stewart, D. (2006). Probability for risk management. Actex Publications.
Reference
Goos, P., & Meintrup, D. (2016). Statistics with JMP: Hypothesis Tests, ANOVA and
Regression. John Wiley & Sons.
Hassett, M. J., & Stewart, D. (2006). Probability for risk management. Actex Publications.
1 out of 8
Your All-in-One AI-Powered Toolkit for Academic Success.
+13062052269
info@desklib.com
Available 24*7 on WhatsApp / Email
Unlock your academic potential
© 2024 | Zucol Services PVT LTD | All rights reserved.