SECTION A INTERVAL ESTIMATION Question 1 Sample observation = 5 {94, 72, 93, 54, 77} Normal distribution Sample mean = 78 Sample standard deviation = 16.54 98% confidence interval for mean of population =? Confidence interval¿mean±t∗ (standarddeviation √Sampleobservation) Hence, Degree of freedom = 5-1 = 4 The t value for 98% confidence interval = 3.75 Lower limit confidence interval¿78−(3.75)∗(16.54 √5)=50.26 Upper limit confidence interval¿78+(3.75)∗ (16.54 √5)=105.74 Therefore, 98% confidence interval for mean of population [50.26105.74] Question 2 1
Sample = 256 cuts Mean thickness = 30.3 mils Standard deviation = 4 mils 95% confidence interval for the mean thickness of population =? The z value for 95% confidence interval = 1.96 Confidence interval¿mean±z∗ (standarddeviation √Sampleobservation) Lower limit confidence interval¿30.3−(1.96)∗ (4 √256)=29.81 Upper limit confidence interval¿30.3+(1.96)∗ (4 √256)=30.79 95% confidence interval for mean thickness of population [29.8130.79] Question 3 Sample = 256 residents Mean thickness = $90 Standard deviation = $24 a.90% confidence interval for average monthly electric bills =? The z value for 90% confidence interval = 1.645 Confidence interval¿mean±z∗ (standarddeviation √Sampleobservation) Lower limit confidence interval¿90−(1.645)∗(24 √256)=87.53 2
Upper limit confidence interval¿90+(1.645)∗(24 √256)=92.47 90% confidence interval for average monthly electric bills [87.5392.47] b.95% confidence interval for average monthly electric bills =? The z value for 95% confidence interval = 1.96 Confidence interval¿mean±z∗ (standarddeviation √Sampleobservation) Lower limit confidence interval¿90−(1.96)∗ (24 √256)=87.06 Upper limit confidence interval¿90+(1.96)∗(24 √256)=92.94 95% confidence interval for average monthly electric bills [87.0692.94] Question 4 Sample = 144 cans Mean thickness = 16 ounces Standard deviation = 1.2 ounces a.68.36% confidence interval for average monthly electric bills =? The z value for 68.36% confidence interval = 1.0018 Confidence interval¿mean±z∗(standarddeviation √Sampleobservation) Lower limit confidence interval¿16−(1.0018)∗ (1.2 √144)=15.90 3
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Upper limit confidence interval¿16+(1.0018)∗(1.2 √144)=16.10 68.36% confidence interval [5.9016.10] b.95% confidence interval for average monthly electric bills =? The z value for 95% confidence interval = 1.96 Lower limit confidence interval¿16−(1.96)∗ (1.2 √144)=15.80 Upper limit confidence interval¿16+(1.96)∗ (1.2 √144)=16.20 95% confidence interval [15.8016.20] PART B Area under the Standard Normal Curve (a)Area between z =0 and z = 2.5 Area¿P(0<Z<2.5) From standard normal table: P(z≤2.5)=0.99379 P(z≤0)=0.5 Area¿P(0<Z<2.5)=P(z≤2.5)−P(z≤0)=0.99379−0.5=0.49379 4
Therefore, thearea between z =0 and z = 2.5 is 0.49379. (b)Area between z =0 and z = 2.58 Area¿P(0<Z<2.5) From standard normal table: P(z≤2.5)=0.99506 P(z≤0)=0.5 Area¿P(0<Z<2.58)=P(z≤2.58)−P(z≤0)=0.99506−0.5=0.49506 Therefore, thearea between z =0 and z = 2.58 is 0.49506. 5
(c)Meanμ= 270 points Standard deviationσ= 35 points Probability that a randomly chosen student will score between 200 and 340 points =? P(200<x<340)=P(200−270<x−μ<340−270) ¿P(200−270 35<x−μ σ<340−270 35) ¿P(−2<z<2) From standard normal table: P(z≤2¿¿0.97725) P(z≤−2)=0.02275 ¿P(−2<z<2)=P(z<¿2)−P(z<¿−2)=0.97725−0.02275=0.9545 Hence,probability that a randomly chosen student will score between 200 and 340 points is 0.9545. (d)Mean scoreμ= 270 points Standard deviationσ= 35 points Normal distribution Let the score that put a student in 95thpercentile is x. The z score for 95thpercentile = 1.644854 Hence, z=x−μ σ 6
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
1.644854=x−270 35 x=327.57 Thus, the score that put a student in 95thpercentile is 327.57. Hence, the minimum cut-off score would be 327.57. INTERVAL ESTIMATION Question 1 Sample = 225 phones Sample mean = 6.5 min Standard deviation = 1.5 min 99% confidence interval =? Degree of freedom = 225-1 = 224 The t value for 99% confidence interval = 2.6 Confidence interval¿mean±t∗ (standarddeviation √Sampleobservation) Lower limit confidence interval¿6.5−(2.6)∗ (1.5 √225)=6.24 Upper limit confidence interval¿6.5+(2.6)∗(1.5 √225)=6.76 7
99% confidence interval [6.246.76] Question 2 Sample = 16 cars Sample mean = 63.6 mph Standard deviation = 4.8 mph 99% confidence interval =? Degree of freedom = 16-1 = 15 The t value for 95% confidence interval = 2.13 Confidence interval¿mean±t∗ (standarddeviation √Sampleobservation) Lower limit confidence interval¿63.6−(2.13)∗ (4.8 √16)=61.04 Upper limit confidence interval¿63.6+(2.13)∗(4.8 √16)=66.15 95% confidence interval [61.0466.15] Question 3 Sample = 36 days Sample mean = 53.8 gallons Standard deviation = 4.2 gallons 85% confidence interval =? 8
Degree of freedom = 36-1 = 35 The t value for 85% confidence interval = 1.471 Confidence interval¿mean±t∗(standarddeviation √Sampleobservation) Lower limit confidence interval¿53.8−(1.471)∗ (4.2 √36)=57.77 Upper limit confidence interval¿53.8+(1.471)∗ (4.2 √36)=54.83 85% confidence interval [57.7754.83] Question 4 Sample = 25 customers Sample mean = $35.50 Standard deviation = $6.25 80% confidence interval =? Degree of freedom = 25-1 = 24 The t value for 80% confidence interval = 1.317 Confidence interval¿mean±t∗ (standarddeviation √Sampleobservation) Lower limit confidence interval¿35.50−(1.317)∗(6.25 √25)=33.85 Upper limit confidence interval¿35.50+(1.317)∗ (6.25 √25)=37.15 80% confidence interval [33.8537.15] 9
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser