Statistics Assignment: Probability and Confidence Intervals

Verified

Added on  2020/05/08

|9
|766
|62
AI Summary
This statistics assignment focuses on fundamental concepts like probability distributions and confidence intervals. It includes problems related to calculating probabilities for various events, working with z-scores and standard normal distributions, constructing confidence intervals for population means, and interpreting results within a given context. The assignment requires applying statistical formulas and techniques to solve real-world scenarios.

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Running Head: STATISTICS (STAT 101)
Statistics (STAT 101)
Name of the Student
Name of the University
Author Note

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
1STATISTICS (STAT 101)
Table of Contents
Section – I........................................................................................................................................3
Answer 1......................................................................................................................................3
Answer 2......................................................................................................................................3
Answer 3......................................................................................................................................3
Answer 4......................................................................................................................................3
Answer 5......................................................................................................................................3
Answer 6......................................................................................................................................3
Section – II.......................................................................................................................................4
Section – III.....................................................................................................................................4
Answer 1......................................................................................................................................4
Part a........................................................................................................................................4
Part b........................................................................................................................................4
Answer 2......................................................................................................................................6
Part a........................................................................................................................................6
Part b........................................................................................................................................6
Answer 3......................................................................................................................................7
Part a........................................................................................................................................7
Part b........................................................................................................................................8
Document Page
2STATISTICS (STAT 101)
Document Page
3STATISTICS (STAT 101)
Section – I
Answer 1
Let X be defined as an event defined as the occurrence of head.
Thus, X ~ Bin (6, 0.5), where the number of independent trials = 6 and the probability of success
is 0.5.
Thus, P (X = 3) = 6C3 * (0.5)3 * (1 – 0.5)3 = 20 * (1/2)6 = 10× ( 1
2 ¿ ¿5
≠ 10× ( 1
2 ¿ ¿4
.
False
Answer 2
True
Answer 3
True
Answer 4
True
Answer 5
True
Answer 6
False

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
4STATISTICS (STAT 101)
Section – II
MCQ 1 2 3 4 5 6
Answers a a d b d d
Section – III
Answer 1
Part a
Number of cards
(x)
Probability
P(x) x*P(x)
(x^2)*P(x
)
0 0.18 0 0
1 0.44 0.44 0.44
2 0.27 0.54 1.08
3 0.08 0.24 0.72
4 0.03 0.12 0.48
Therefore, the mean of the distribution = E(x) = xP (x) = (0.44 + 0.54 + 0.24 + 0.12) = 1.34
E(x2) = x2 P ( x) = 0.44 + 1.08 + 0.72 + 0.48 = 2.72
Variance of the distribution = var(x) = E(x2) – (E(x))2 = 2.72 – (1.34)2 = 0.92
The standard deviation of the distribution = var (x)= 0.92 = 0.96.
Part b
The Bruskin Market Research, Inc. determined that 40% of college students work part-time
during the academic year.
Document Page
5STATISTICS (STAT 101)
Therefore, the probability of the students working part time = 0.4
Let X be the number of students working part time.
Therefore, X ~ Bin (5, 0.4).
P (X = 0) = ( 5
0 ) (0.4)0 ¿ = 0.0778
P (X = 1) = (5
1 )(0.4 )1 ¿ = 0.2592
P (X = 2) = ( 5
2 ) (0.4 )2 ¿ = 0.3456
P (X = 3) = ( 5
3 ) (0.4 )3 ¿ = 0.2304
P (X = 4) = ( 5
4 ) (0.4)4 ¿ = 0.0768
P (X = 5) = (5
5 )(0.4 )5 ¿ = 0.01024
1. Therefore, the probability of at most 3 students working part time = P (X = 0) + P
(X = 1) + P (X = 2) + P (X = 3) = 0.0778 + 0.2592 + 0.3456 + 0.2304 = 0.91296.
2. Therefore, the probability of at least 2 students working part time = P (X = 2) + P
(X = 3) + P (X = 4) + P (X = 5) = 0.3456 + 0.2304 + 0.0768 + 0.01024 = 0.5853.
3. Therefore, the probability that less than 3 students work part time = P (X = 0) + P (X = 1)
+ P (X = 2) = 0.0778 + 0.2592 + 0.3456 = 0.6826.
Document Page
6STATISTICS (STAT 101)
Answer 2
Part a
1. P(z < 2.0) = 0.9772
2. P(z > -1.88) = 1 – P(z < -1.88) = 1 – (1 – P(z < 1.88)) = P(z < 1.88) = 0.9699
3. P(-1.18 < z < 2.1) = P(z < 2.1) – P(z < -1.18) = P(z < 2.1) – (1 – P(z < 1.18)) = P(z < 2.1)
+ P(z < 1.18) – 1 = 0.9821 + 0.8810 – 1 = 0.8631.
Part b

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
7STATISTICS (STAT 101)
Answer 3
Part a
Document Page
8STATISTICS (STAT 101)
Part b
Sample number (n) = 40
Average playing time (μ) = 51.3 minutes
Standard deviation of the playing time (σ) = 5.8 minutes
Therefore, the 95 percent confidence interval = (μ ± t * σ
n) = (51.3 ± 2.023 * 5.8
40 ) = (49.44,
53.16).
1 out of 9
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]