Problem 2.............................................................................................................................................1 Solution.............................................................................................................................................1 Problem 3.............................................................................................................................................2 Part 1....................................................................................................................................................2 Part 2....................................................................................................................................................4
Problem 2 Solution The initial stage of the dataset can be used for the specified range, which can access on (x1, y1) as follows and find the problem models as, yi∽iidN(xi Tw,σ2) It can consider the approximate data values on the dataset, which is given as, wRR=(λI+xTx)−1xTy Consider the data on points f(x, y), which can be used for the regression function and find the values of minimizing square of the sum errors, and W is the parameter. We can consider the set of dataset(x1, y1) ...... (Xi, yi). The dataset can be used to find the values of least square on the sum of minimization errors. The measurement of the dataset can be used for considering the linear relationship of the response xi, yi. Yi=W0+∑ i=1 n xi Tw+Si At the same time, it can calculate the minimization of vector and values of matrices. L=∑ i n ∑ i=1 n xi Tw Xi= x1 x2 …..xn = The finding linear regression values can be used for the intercept and the vector elements of the matrix values s X. Δwl=∑ i=1 0 ¿¿¿+w) Later, it is possible to calculate the values of w on the distribution solution i.e., 1
E(X) = E(xTx)-1XTy=∫(x¿¿Tx)−1xT¿y) =(x¿¿Tx)−1xTE[y]¿ =(x¿¿Tx)−1¿xTX[w] = w Var [y]=E [[y-E(y))(y-E[y])T]=∑w Let us consider the assumption values and display the Gaussian values, which are as follows, E[wml]=w, var [wml]=σ2(XTX)-1 The finding values isE(wRR)=0.05. The finding values is V(wRR)=0.10. Problem 3 Part 1 a.Large Square Value 2
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser