Structural Analysis 1

Verified

Added on  2023/06/03

|12
|1576
|450
AI Summary
This document contains solutions for Structural Analysis 1. It includes calculations for reactions at the support, node analysis, deflection at midspan and free ends, and shear force and bending moments for a trapezoidal load. It also includes solutions for a section from C to E.

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Structural Analysis 1
STRUCURAL ANALYSIS
Name:
Class:
Professor:
School:
City:
Date:

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Structural Analysis 2
Question 1 Solution
2 4 5 5 25KN
6
1 8 1 m
1 2 3 6
1m 1 m 1 m
Reactions at the support
Ry1 Ry2
Rx2
Rx1
Rx1 =Rx 2=0
2 Ry 2=25 ×3
¿ 37.5 k N
2 Ry 1+ 25=0
Ry 1=12.5 kN
3 9 7
Document Page
Structural Analysis 3
Node 1
2
1 m
1 m
F1
F2
12kN
H =0
F2+ 1
2 F1 =0
V =0
12.5 1
2 F1=0
F1=12.5 2 kN =17.68 kN (Tension)
F2+ 1
2 ( 12.5 2 )=0
F2+ 1
2 ( 12.5 2 )=0
F2=12.5 kN =12.5 kN (Compression)
Hence , F6 =F2=12.5 kN=12.5 kN ( Compression )
Node 3
Document Page
Structural Analysis 4
F4
F1 F3 F9
F3=F7 =0
H =0
F4 + 1
2 F9 1
2 F1=0
F4 + 1
2 F9 1
2 ( 12.5 2 )=0
F4 + 1
2 F912.5=0
V =0
1
2 F1 + 1
2 F9=0
1
2 ( 12.5 2 ) + 1
2 F9=0
F9=12.5 2=17.68 kN (Compression)
Therefore , F4 + 1
2 (12.5 2 )12.5=25 kN ( Tension )
Node 6
25 kN
F5
F8
H =0
F5+ 1
2 F8=0

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Structural Analysis 5
V =0
25+ 1
2 F8 =0
F8=25 2 kN=35.36 kN (Compression)
F5+ 1
2 (25 2 )=0
F5=25 kN ( Tension )
F1=12.5 2 kN =17.68 kN (Tension)
F2=12.5 kN (Compression)
F3=0
F4=25 kN (Tension )
F5=25 kN ( Tension )
F6=12.5 kN (Compression)
F7=0
F8=35.36 kN (Compression)
F9=17.68 kN (Compression)
Question 2 Solution
2kN UDL=5kN/m 2kN
2m 8m 2m
x
EI =43 ×1012 N mm2=43 ×103 kN m2
E I y' ' =M
Moments about R1=0 , hence
Document Page
Structural Analysis 6
8 R2= (2 ×10 )+ ( 5× 10× 5 ) (2 ×2 ) ( 2× 2× 1 )
R2=32 kN
R1= (12 ×5 )+ ( 4 )32=32 kN
E I y' ' =2 x +5 x2
2 32 ( x2 ) +5 ( x10 ) 2
2 32 ( x10 ) +5 ( x10 ) 2
2
Integrate bothsides of the equation
E I ( y' ' ) = ( 2 x +5 x2
2 32 ( x2 ) +5 ( x2 )2
2 32 ( x10 ) +5 ( x 2 ) 2
2 )
E I y'=x2 + 5 x3
6 16 ( x2 ) 2 + 5 ( x2 ) 3
6 16 ( x10 ) 2+ 5 ( x10 ) 3
6 +C1
Integrate bothsides of the equation
E I ( y' )= ( x2 + 5 x3
6 16 ( x2 ) 2+ 5 ( x2 ) 3
6 16 ( x10 ) 2 + 5 ( x10 ) 3
6 +C1 )
E I y = x3
3 + 5 x4
24 16 ( x2 ) 3
3 + 5 ( x 2 ) 4
24 16 ( x10 ) 3
3 + 5 ( x10 ) 4
24 +C1 x +C2
At x=2 , y =0 , hence
23
3 + 5(2)4
24 16 ( 22 ) 3
3 + 5 ( 22 ) 4
24 16 ( 210 ) 3
3 + 5 ( 210 ) 4
24 +2 C1 +C2=0
8
3 + 10
3 + 8192
3 2560
3 +2C1 +C2 =0
5650
3 +2 C1+C2=0 (i)
At x=10 , y =0 , hence
103
3 + 5(10)4
24 16 ( 102 )3
3 + 5 ( 102 ) 4
24 16 ( 1010 )3
3 + 5 ( 1010 ) 4
24 +10 C1 +C2=0
1000
3 + 6250
3 8192
3 + 2560
3 +10 C1+C2=0
1618
3 +10 C1 +C2=0(ii)
Solving (i ) ( ii ) simultaneously ,
Document Page
Structural Analysis 7
5650
3 +2 C1+C2=0
¿
1618
3 +10 C1 +C2=0
4032
3 8 C1=0
C1=504
3 =168
1618
3 + 504 0
3 +C2=0
C2=6658
3
Therefore ,
EIy= x3
3 + 5 x4
24 16 ( x2 )3
3 + 5 ( x2 )4
24 16 ( x10 )3
3 + 5 ( x 10 )4
24 + 504
3 x 6658
3
Deflection at midspan , x=6
EIy= 63
3 + 5 ( 6 ) 4
24 16 ( 62 )3
3 + 5 ( 62 ) 4
24 16 ( 610 ) 3
3 + 5 ( 610 ) 4
24 + 504 ( 6 )
3 6658
3
EIy= 18
3 + 810
3 1024
3 + 160
3 1024
3 + 160
3 + 3024
3 6658
3
EIy=4534
3
But EI=43 ×103 kN m2 , hence
y= 4534
3 ( 43 × 103 ) =0.03515 m=35.15 mm
Deflectioat free ends , x=0x=12
EIy= 03
3 + 5 ( 0 ) 4
24 16 ( 02 ) 3
3 + 5 ( 02 ) 4
24 16 ( 010 ) 3
3 + 5 ( 010 ) 4
24 + 504 ( 0 )
3 6658
3
EIy= 128
3 + 10
3 + 16000
3 + 6250
3 6658
3 =15730
3

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Structural Analysis 8
But EI=43 ×103 kN m2 , hence
y= 15730
3 ( 43 × 103 ) =0.1219 m=121.9 mm
EIy= 123
3 + 5 ( 12 ) 4
24 16 ( 122 ) 3
3 + 5 ( 122 ) 4
24 16 ( 1210 ) 3
3 + 5 ( 1210 ) 4
24 + 504 ( 12 )
3 6658
3
EIy= 1728
3 + 12960
3 16000
3 + 6250
3 128
3 + 10
3 + 6048
3 6658
3 = 4210
3
But EI=43 ×103 kN m2 , hence
y= 4210
3 ( 43 × 103 ) =0.03264 m=32.64 mm
Question 2 Solution
RA 3kN/m P1=1kN RB P2=2kN
A C D B E
HA
5/3 m 2.5/3 m
2.5 m 1 m 1.5 m 5 m
Area of trapezoidal load= 1
2 × 3× 2.5=3.75 kN
5 RB = ( 2 ×10 ) + ( 3.5 ×1 ) + (3.75× 5
3 )
RB=5.95 kN
RA =2+1+3.755.95
RB=0.8 kN
Document Page
Structural Analysis 9
SECTION A-C
HA 2 kN/m
1 kN/m
3 H A =1× 3.75=1.25 kN
X 3 kN/m
A B
W
O D C
x X
2.5 m
Triangle OADOBC are similar , hence
w
3 = x
2.5
w= 3 x
2.5
Average load=
3 x
2.5 + 0
2 =3 x
5
kN
m
Total load along x=3 x2
5 kN
w
Document Page
Structural Analysis 10
Shear Force
Along the XX line , SFxx=0.83 x2
5
At x=0
SF=0.8 kN
At x=2.5 m
SF=0.8 3 ( 2.5 ) 2
5 =2.95 kN
If SF =0
0.83 x2
5 =0 , x=1.15 m
Bending Moments
Along the XX line , BM xx=0.8 x 3 x2
5 x
3 =0.8 x x3
5
At x=0
BM =0 kNm
At x=2.5 m
BM =0.8 ( 2.5 ) ( 2.5 ) 3
5 =1.125 kNm
Maximum BM occurs when SF=0. For our case , at x=1.15 m
BM =0.8 ( 1.15 ) ( 1.15 )3
5 =0.616 kNm
When BM =0 , then
0.8 x x3
5 =0
0.8 x2
5 =0
x2
5 =0.8
x=2

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Structural Analysis 11
SECTION C-E
At D , BM D= ( 0.8 ×3.5 )3.75 ( 2.5
3 +1 )=4.075 kNm
At B , BM B= ( 0.8 ×5 )3.75 ( 2.5
3 +2.5 ) ( 1× 1.5 )=10 kNm
At E , BM E = ( 0.8 ×10 ) 3.75 ( 2.5
3 +7.5 ) ( 1× 6.5 )+(5 ×5.95)=0 kNm
SFD
BMD
3kN/m P1=1kN P2=2kN
Document Page
Structural Analysis 12
References
Bansal, R. K., 2010. Srength of Materials. 4th ed. New Delhi: Laxmi Publications (P) Ltd..
Beer, F. P., Jonston Jr., E. R. & DeWolf, J. T., 2015. Mechanics of Materials. 7th ed. New York:
McGraw-Hill Education.
Gere, J. M. & Goodno, B. J., 2013. Mechanics of Materials. 8th ed. Stamford: Cengage
Learning.
Menon, D., 2008. Structural Analysis. 1st ed. Oxford: Alpha Science.
1 out of 12
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]