Task and Design Project

Verified

Added on  2022/12/01

|12
|1873
|284
AI Summary
This document discusses the Task and Design Project, covering topics such as free space propagation, path loss, and cellular network design. It provides insights into antenna selection and network optimization. The document also includes references to relevant research papers.
tabler-icon-diamond-filled.svg

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Running Head: Task and Design Project 1
Task and Design Project
Student Name
Institution
Course
Date
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Assessment 2 - Task and Design Project 2
Task 1: Free Space Propagation and Path Loss
Answer
Based on the free space model (Sun et al, 2016):
----------------------------------- (1)
in terms of dB:
As with the given measurements (Sun et al, 2016):
----------------------------------- (2)
Few things to be observed (Sulyman et al, 2016):
1) The equation (1) is between received power and the distance travelled
2) The equation (2) is the relation between path loss (dB) and the distance
3) A gain of 0 dB is equivalent to '1' [0 = 10log10 (1) dB]
Now the given data is collected as shown below:
Document Page
Assessment 2 - Task and Design Project 3
Transmitted power = 100 watts = 100 x 103 milli-watts (mW) = 105 mW
Frequencies = 150, 400, 1000 MHz (106 Hz)
Here 'c' represents the speed of radiation in free space ( we take c = 3 x 108 meters/seconds)
The script:
clear all;
clc;
Gt = 1;
Gr = 1;
F = [150,400,1000]*(10^6); % Frequencies
Pt = 100; % Transmitted power
syms d;
figure
for i=1:length(F)
L = (3*(10^8))/F(i); % Wavelength
Pr = Pt*Gt*Gr*((L/(4*pi*d))^2);
ezplot(Pr)
hold on
Document Page
Assessment 2 - Task and Design Project 4
end;
xlabel('Distance (Meters)');
ylabel('Power (Watts)');
legend('150 Hz','400 Hz','1000 Hz');
title('Received Power (Watts)');
xlim([0 inf]);
figure
for i=1:length(F)
L = (3*(10^8))/F(i); % Wavelength
Pl = 20*log10(L/(4*pi*d));
ezplot(Pl)
hold on
end
xlabel('Distance (Meters)');
ylabel('Path Loss (dB)');
legend('150 Hz','400 Hz','1000 Hz');
title('Path Loss (dB)');
xlim([0 inf]);
output:
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Assessment 2 - Task and Design Project 5
Document Page
Assessment 2 - Task and Design Project 6
Task 2: Research Project (10%)
Answer
From ithe icellular iarchitecture ishown ibelow, ithere iare iseveral ifacts iwhich icome
iout iclearly. iFirst, ithere iis ia ihigh itraffic idensity iin ithe iurban iareas icompared ito ithe
iouter irural iareas. iSecondly, ithe icells iare ia ibit ismaller iin ithe iurban iarea ias icompared
ito ithe irural iareas. iAs ia iresult, ithe inetwork idesign iwhich ientails ithe inumber iof ibase
Document Page
Assessment 2 - Task and Design Project 7
istations ito ibe iused iand itheir iplacement isites iin iErlang imust iconsider ithe itwo ifacts iin
iorder ito iminimize iintercell iinterference i(Kuo iet ial, i2017).
The proposed design
(Becker et al, 2011)
At ithe iurban iarea iwhere icells iare ismall iand ioperating iunder ihigh itraffic idensity
i(20), ieach icell iwill ihave iits iown ibase istation ito isupport ithe ihigh itraffic idensity. iThe
ibase istations iwill ibe iclose ito ithe istreet ilevel ior ieven iinside ithe ibuildings iand iwill ibe
itransmitting iat ilower ipower. iThis iis iin iconsideration iof ithe ifact ithat ithe icells iat ithe
iurban iarea ihave ihigher itraffic idensity ias icompared ito ithe icells iin ithe irural iareas. iThis
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Assessment 2 - Task and Design Project 8
iwill ialso iensure ithat ithere iis ia ibetter ipropagation icondition iin ithe iarea isince ilower
ibase istations ihave ireduced ishadowing iand imultipath i(Kuo iet ial, i2017).
Out iof ithe iurban icore, ithere iis ia isuburban iarea iwhere ithe icells iare ia ibit ilarger
ithan ithe icells iin ithe iurban icore ibut ismaller ithan ithe icells iin ithe irural iareas. iAlso, ithe
iuser idensity ior itraffic idensity i(14) iis iless ithan ithe iurban icore ibut igreater ithan ithe
irural iarea. iThe iproposed idesign iwill ifirst iconsider ithe ispatial iseparation iof ithe icells iat
ithis iarea ito idetermine iwhether ireuse iof ithe isame ichannel iset i(base istation) ican ibe
iapplied. iWhere ithe ireuse idistance iis ismall, ithe icells iwill ibe iset ito ishare ione ibase
istation. iEvaluating ithe ireuse idistance ito iensure iit iis ias ismall ias ipossible iwill ibe idone
ito imaximize ithe ispectral iefficiency iwhich iis iobtained iby ifrequency ireuse i(Kuo iet ial,
i2017).
On ithe iother ihand, ibased ion ithe iprinciple iof ifrequency ireuse iwhich iexploits ithe
ipath iloss ito ireuse ifrequency ispectrum iat ispatially iseparated ilocations, iat ithe irural iareas
iwhere ithe icell isize iis ivery ibig ithe ibase istations iwill ibe iplaced ion itall ibuildings ior itall
istructures iand iwill ibe itransmitting iat ivery ihigh ipower iin iorder ito ihave icell icoverage
iof iseveral isquire imiles. iSignals ifrom ithese ibase istations iwill ibe ipropagated iuniformly
iin iall idirections ito iallow imobile iusers imoving iaround ithe ibase istations ito
iapproximately ireceive ipower iconstantly i(Wang iet ial, i2017).
Rectangular iAntennas iwill ibe iused iin irural iareas. iBasically, irectangular iantennas
iare idirectional iantennas iwhich iare iused ito iserve ithe iareas ioutside ithe ivicinity iof ithe
itower i(Wang iet ial, i2017).
Document Page
Assessment 2 - Task and Design Project 9
In ithe iproposed idesign, ithese iantennas iwill ibe iconnected ito ithe iBTS ithrough
icoaxial icables ito ifacilitate ireceiving iand itransmitting idata ifrom inearby iusers. iThe
ireason ibehind iusing ithe iantennas iat ithe irural iareas irather ithan ithe iurban iareas iof
iErlang iis ibecause ithe ibase istations iat ithe irural iareas iof ithis itown iwill ibe ishared
ibetween idifferent icells i(Wang iet ial, i2017).
However, ito ifacilitate icommunication ibetween idifferent iBTSs, icircular iantennas
iwill ialso ibe iused iin ithis iproposed idesign i(Wang iet ial, i2017). i
For ithis idesign, ithese iantennas iwill ibe ioperating iat imicrowave ifrequencies ihaving
ipoint ito ipoint itransmission iand ireception ipoints. iThey iwill ibe iconnected ito ithe iBTSs
iusing ithe iwaveguides. iThe iwaveguides, ion ithe iother ihand, iwill ibe iterminating iat ithe
iBTSs ifrom iwhich iinformation iwill ibe idisbursed ito ithe isurrounding iareas ithrough ithe
ioutdoor iantenna iunits i(Rectangular iAntennas) i(Wang iet ial, i2017)
In iorder ito icome iup iwith ieffective iantennas, iand iminimize iintercell iinterference
ias imuch ias ipossible, ithe iproposed idesign iwill iuse ilower igain iantennas iat ithe icore
iurban iarea. iThis iis ibecause iin ithe icore iurban iarea iof iErlang iwhere itraffic idensity iis
ihigh iand ieach icell ihas iits iown ibase istation; iif ithe iantenna igain iis ihigh ithe iintercell
iinterference iwill ibe ivery ihigh ias iwell. iHowever, iat ithe irural iareas iof iErlang iwhere ithe
icells iare ilarge, itraffic idensity iis ilow iand ibase istations iare ishared ibetween icells.
iAntennas iof ihigher igain iwill ibe iused. iThis iis ibecause ihigher igain iantennas iare imore
ieffective iin itheir iradiation ipatterns i(Kuo iet ial, i2017)
Document Page
Assessment 2 - Task and Design Project 10
(2) Looking at Figure 1 below, justify the design of this cellular network with appropriate
reasoning? (2 marks)
The icentral ipart irepresents ithe iurban iarea. iIt iis ifull iof itowers ibecause iurban
iconnections iusually iwork iunder ihigh ispeed. iBecause iof ihigh-speed irequirements, iit ihas
ibeen iequipped iwith imany itowers ito isupport iand ifacilitate ithat. iParticularly, ithe icity ihas
ibeen irepresented iby ithe itowers imarked iwith iletter i20. iThe inext iarea iafter ithe iurban
iarea iis ithe isuburban iarea iwhich iis islightly iless idense ithan ithe iurban iarea ibut idenser
ithan ithe irural iarea. iFrom ithe idiagram, ithis iarea ihas itowers imarked iby iletter i12. iRight
ifrom ithe isuburban iarea iis ithe irural iarea iwhere ithe itowers iare isparsely ipopulated.
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Assessment 2 - Task and Design Project 11
iSpecifically, itowers iin ithis iarea iare imarked iby iletter i8. iThe ioptimized ishape iof ithe
ibase istation iconsidering iall ithe ipossible ioutcomes iis ihexagon. iIt ihas ioptimized iarea
iutilization iwith inetwork iusers iat ievery ipart icompared ito iother ishapes. iSo, ihexagon iis
ichosen iin ithis icase.
References
Becker, R. A., Caceres, R., Hanson, K., Loh, J. M., Urbanek, S., Varshavsky, A., & Volinsky, C.
(2011). A tale of one city: Using cellular network data for urban planning. IEEE
Pervasive Computing, 10(4), 18-26.
Kuo, J. J., Shen, S. H., Kang, H. Y., Yang, D. N., Tsai, M. J., & Chen, W. T. (2017, May).
Service chain embedding with maximum flow in software defined network and
application to the next-generation cellular network architecture. In IEEE INFOCOM
2017-IEEE Conference on Computer Communications (pp. 1-9). IEEE.
Sulyman, A. I., Alwarafy, A., MacCartney, G. R., Rappaport, T. S., & Alsanie, A. (2016).
Directional radio propagation path loss models for millimeter-wave wireless networks in
the 28-, 60-, and 73-GHz bands. IEEE Transactions on Wireless
Communications, 15(10), 6939-6947.
Sun, S., Rappaport, T. S., Rangan, S., Thomas, T. A., Ghosh, A., Kovacs, I. Z., ... & Jarvelainen,
J. (2016, May). Propagation path loss models for 5G urban micro-and macro-cellular
scenarios. In 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring) (pp. 1-6).
IEEE.
Document Page
Assessment 2 - Task and Design Project 12
Wang, J., Ji, L., Liu, X. Y. A., & Shafiq, M. Z. (2017). U.S. Patent No. 9,693,237. Washington,
DC: U.S. Patent and Trademark Office.
chevron_up_icon
1 out of 12
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]