Line Integral, Double Integral, Flux and Green's Theorem

   

Added on  2023-03-17

6 Pages1302 Words62 Views
The given vector field is:
F=¿ xy ,x2 >¿
Path of integration C is potion of unit circle in first quadrant as shown in figure below:
Figure 1 - Path of integral C and region of integration D
a) Line integral
C
F · dr
In order to evaluate the line integral, we need to parametrize curve C. The curve is divided
into 3 paths: C1, C2 and C3 as shown in the figure above.
Property of line integrals:

C
F · dr =
C 1
F · dr+
C 2
F · dr+
C 3
F · dr
Line Integral, Double Integral, Flux and Green's Theorem_1
1) Path C1: line from (0,0) to (1,0)
Parametric equation for C1:
r ( t ) =¿ t , 0> ,0 t 1
dr=¿ 1 , 0>dt
therefore,

C 1
F · dr=
C 1
¿ xy ,x2 >·<t , 0> dt
Put: x = t and y = 0
¿
C 1
¿ 0 ,t2 >·<t , 0> dt
¿
C 1
0 ·tt2 ·0 dt=0
2) Path C2: circle from (1,0) to (0,1)
Parametric equation for C2:
r ( t )=¿ cos t ,sin t >, 0 t π
2
dr=sint , cos t> dt
therefore,

C 2
F · dr=
C 2
¿ xy ,x2 >sin t ,cos t>dt
Put: x = cos t, y = sin t
¿
C 2
¿ cos sin t ,cos2 t >·sin t , cos t> dt
¿
0
π
2
sin2 cos tcos3 t dt =
0
π
2
cos t ( sin2 t+cos2 t ) dt

0
π
2
cos t · dt = [ sin t ]0
π
2 =1
3) Path C3: line form (1,0) to (0,1)
Parametric equation for C3:
r ( t ) =¿ 0 , 1t >, 0 t 1
dr=¿ 0 ,1>dt
therefore,
Line Integral, Double Integral, Flux and Green's Theorem_2

C 3
F · dr=
C 3
¿ xy ,x2 >·<0 ,1> dt
Put: x = 0, y = 1-t

C 3
¿ 0 , 0>·<0 ,1> dt=0
Therefore, the line integral over path C is:

C
F · dr =0+1+0=1
b) Double Integral:
F2
x F1
y =
x (x2 )
y ( xy ) =2 x x=3 x
therefore,
∫∫ ( F2
x F1
y )dA=∫∫
D
3 x dA
Region D is the are enclosed by path of the integral (C), as shown in the figure-1.
Limits of integration in region D are:
x : 0 x 1 , y :0 1x2 1
Therefore,
∫∫
D
3 x dA=
0
1

0
1x2
3 x dydx=
0
1
[ 3 xy ]0
1 x2
dx=
0
1
3 x 1x2 dx
Substitute:
1x2=t 2 x dx=dt

0
1
3
2 t dt=[t
3
2 ]0
1
= [ ( 1x2 )
3
2 ]0
1
=01=1
This result is equal to the result in part a).
c) Flux
C
F · dr
The flux of vector field over the entire path is again calculated by computing flux over
sub-paths (C1, C2 and C3) and adding them:
Line Integral, Double Integral, Flux and Green's Theorem_3

End of preview

Want to access all the pages? Upload your documents or become a member.

Related Documents
Proving Green's Theorem
|9
|1785
|79

Circulation and Area using Green's Theorem
|13
|2259
|148

Future Engineering Mathematics: Line Integrals, Double Integrals, and Power Method
|17
|2629
|468

Line Integral of a Vector Field
|5
|861
|191

Calculus II Solved Problems and Solutions | Desklib
|9
|1753
|180

Green's Theorem and Circulation of Vector Field
|5
|719
|400