Trigonometric Methods 1

Verified

Added on  2023/06/11

|9
|980
|371
AI Summary
This document contains solved problems on Trigonometric Methods including finding sin, cos, and Pythagoras theorem. It also includes problems on amplitude, period, frequency, and phase angle. Additionally, it covers problems on impedance, power, and phase difference.

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Trigonometric Methods 1
Trigonometric Methods
Student’s Name
Course
Professor’s Name
University
City (State)
Date

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Trigonometric Methods 2
Trigonometric Methods
Question 1
Part a
sin Y = WX
WY
sin 58= 32 km
WY
WY = 32
sin58 =37.7338 km
WY 38 km(¿ the nearest km)
Part b
cosθ= WZ
WY = 27
37.7338 =0.71554
θ=cos1 0.71554=44.312°
Document Page
Trigonometric Methods 3
θ 44 ° (¿ the nearest degree)
Part c
Using Pythagoras theorem,
YZ= WY 2WZ 2= 37.73382272=26.3598 km
YZ 26 km(¿ the nearest km)
Question 2
i=15 sin(100 πt+ 0.6)
The equation is in the form y¿ asin(bt +c )
a) amplitude ¿ a=15 Amperes
b) period ¿ b=100 π
c) Frequency¿ 1
period = 1
100 π
d) Phase angle¿ c=0.6 radians= (0.6 × 180
π )°=34.3775 °
e) When t=2.5 s ,i=15 sin(100 π × 2.5+ 0.6)
¿ 15 sin ( 250 π + 0.6 )=15 × 0.5646=8.4696 Amperes
f) The current reaches the maximum level when sin ( 100 πt +0.6 )=1 so that,
sin1 1=(100 πt +0.6)
100 πt =sin1 10.6=1.57060.6=0.9708
t= 0.9708
100 π =0.00309 seconds
Document Page
Trigonometric Methods 4
t=0.00309 ×1000=3.09 milliseconds
Question 3
Part a (i)
cos (270 °θ)
270 °θ=180+( 90θ)
cos ( 270 °θ ) =cos (180+(90θ))
But we know that, cos ( 180+ ) =cos so that, cos ( 270 °θ ) =cos (90θ)
But again, cos ( 90θ )=( sinθ )
Hence, cos ( 270 °θ )=sinθ
Part a (ii)
sin (270 °θ)
270 °θ=180+( 90θ)
sin ( 270 °θ ) =sin (180+(90θ))
But we know that, sin ( 180+ )=sin so that, sin ( 270 °θ ) =sin (90θ)
But again, sin ( 90θ )=(cosθ )
Therefore, sin ( 270 °θ )=cosθ
Part a (iii)
cos (270 °+θ)

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Trigonometric Methods 5
270 ° +θ=180+(90+θ)
cos ( 270 ° +θ ) =cos (180+(90+θ))
But we know that, cos ( 180+ ) =cos so that, cos ( 270 ° +θ ) =cos (90+θ)
But again, cos ( 90+θ ) =(sinθ)
Hence, cos ( 270 ° +θ ) =sinθ
Part 3b
V 1=3 sin (ωt )
V 2=2 cos (ωt )
V 3=V 1 +V 2=3 sin ( ωt ) +2 cos ( ωt)
but R sin ( ωt +α ) =(Rcosα )sin ( ωt ) +( Rsinα) cos( ωt)
Which implies that,
Rcosα =3 and Rsinα=2
Rsinα
Rcosα = 2
3 =tanα
α =tan1
( 2
3 )=33.69°
Rcosα =3 , R= 3
cosα = 3
cos 33.69 ° =3.6056
So, V 3=R sin ( ωt +α ) =3.6056 sin (ωt +33.69 °)
Document Page
Trigonometric Methods 6
Hence, we can see that frequency of V 1 =frequency of V 2=frequency of V 3= 1
ω
Question 4a
Z= Z1 Z2
Z1 +Z2
Z1 =4+ j 10
Z2 =12 j 3
Z= (4+ j 10)(12 j3)
( 4+ j10 )+(12 j 3)= 4 (12 j 3 ) j10(12 j 3)
4 +12+ j 10 j3 =78+ j108
16+ j7
Converting the numerator into polar form we get,
r = 782+¿1082
=133.2216 , θ=tan1
( 108
78 ) =54.1623° ¿
Hence, 78+ j108=¿133.2216¿ 54.1623 °
Converting the denominator into polar form we get,
r = 162+¿72
=17.4642, θ=tan1
( 7
16 )=23.6294 ° ¿
Hence, 16+ j7=¿17.4642¿ 23.6294 °
78+ j 108
16 + j 7 =¿133.2216¿ 54.1623 ° ÷17.4642¿ 23.6294 °
Z=¿7.6283¿ 30.5329 °
r =7.6283 ,θ=30.532 9
Document Page
Trigonometric Methods 7
x=rcosθ=7.6283 cos 30.5329=6.5705
y=r sin θ=7.6283 sin 30.5329=3.8754
z=x +i y =6.5705+ j 3.8754
Z=¿7.6283¿ 30.5329 °
Question 4b
Z1 =2+ j 2
Z2 =1+ j 5
Z3 = j 6
Y = 1
Z1
+ 1
Z2
+ 1
Z3
= 1
2+ j 2 + 1
1+ j 5 + 1
j6
1
j 6 = 1 × j
j 6 × j = j
6
Y = 6 ( 1+ j5 ) +6 ( 2+ j2 ) j ( 2+ j 2 ) ( 1+ j5 )
6(2+ j2)(1+ j 5)
Y = 6+ j30+ 12+ j12+ j 8+12
6(8+ j 12) = 30+ j 50
48+ j 72
30+ j50= 302+502 ¿ tan1 (50/30) ¿ 3400 ¿ 59.0362
48+ j 72= 482 +722 ¿ tan1 (72/48) ¿ 7488 ¿56.3099
Y = 3400 ¿ 59.0362 ÷ 7488 ¿56.3099
Y =¿0.6738 ¿ ( 59.0362+56.3099 )180

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Trigonometric Methods 8
Y =¿0.6738 ¿64.6539
r =0.6738 ,θ=64.6539
x=rcosθ=0.6738 cos (64.6539)=0.2884
y=rsinθ=0.6738 sin ( 64.6539 ) =0.6089
Y =x +iy=0.2884 j 0.6089
Question 5
Part a
V =40+ j3 5
I =6+3 j
Document Page
Trigonometric Methods 9
Part b
θV =tan1
( 35
40 )=tan1 0.875=41.1859 °
θi =tan1
( 3
6 )=tan1 0.5=26.5651 °
Phase difference=θV θi=41.185926.1859=14.6208 °
Part c
Power=¿ V ¿ I cos
|V |= 4 02+ 352=53.1507
|I |= 32 +62=6.7082
=Phase difference=14.6208 °
Power=|V ||I |cos =53.1507 ×6.7082 cos 14.6208 °=345 Watts
1 out of 9
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]