Analytical Methods for Engineers: Trigonometric Methods TMA 2 Solution

Verified

Added on  2023/06/11

|9
|980
|371
Homework Assignment
AI Summary
Document Page
Trigonometric Methods 1
Trigonometric Methods
Student’s Name
Course
Professor’s Name
University
City (State)
Date
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Trigonometric Methods 2
Trigonometric Methods
Question 1
Part a
sin Y = WX
WY
sin 58= 32 km
WY
WY = 32
sin58 =37.7338 km
WY 38 km(¿ the nearest km)
Part b
cosθ= WZ
WY = 27
37.7338 =0.71554
θ=cos1 0.71554=44.312°
Document Page
Trigonometric Methods 3
θ 44 ° (¿ the nearest degree)
Part c
Using Pythagoras theorem,
YZ= WY 2WZ 2= 37.73382272=26.3598 km
YZ 26 km(¿ the nearest km)
Question 2
i=15 sin(100 πt+ 0.6)
The equation is in the form y¿ asin(bt +c )
a) amplitude ¿ a=15 Amperes
b) period ¿ b=100 π
c) Frequency¿ 1
period = 1
100 π
d) Phase angle¿ c=0.6 radians= (0.6 × 180
π )°=34.3775 °
e) When t=2.5 s ,i=15 sin(100 π × 2.5+ 0.6)
¿ 15 sin ( 250 π + 0.6 )=15 × 0.5646=8.4696 Amperes
f) The current reaches the maximum level when sin ( 100 πt +0.6 )=1 so that,
sin1 1=(100 πt +0.6)
100 πt =sin1 10.6=1.57060.6=0.9708
t= 0.9708
100 π =0.00309 seconds
Document Page
Trigonometric Methods 4
t=0.00309 ×1000=3.09 milliseconds
Question 3
Part a (i)
cos (270 °θ)
270 °θ=180+( 90θ)
cos ( 270 °θ ) =cos (180+(90θ))
But we know that, cos ( 180+ ) =cos so that, cos ( 270 °θ ) =cos (90θ)
But again, cos ( 90θ )=( sinθ )
Hence, cos ( 270 °θ )=sinθ
Part a (ii)
sin (270 °θ)
270 °θ=180+( 90θ)
sin ( 270 °θ ) =sin (180+(90θ))
But we know that, sin ( 180+ )=sin so that, sin ( 270 °θ ) =sin (90θ)
But again, sin ( 90θ )=(cosθ )
Therefore, sin ( 270 °θ )=cosθ
Part a (iii)
cos (270 °+θ)
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Trigonometric Methods 5
270 ° +θ=180+(90+θ)
cos ( 270 ° +θ ) =cos (180+(90+θ))
But we know that, cos ( 180+ ) =cos so that, cos ( 270 ° +θ ) =cos (90+θ)
But again, cos ( 90+θ ) =(sinθ)
Hence, cos ( 270 ° +θ ) =sinθ
Part 3b
V 1=3 sin (ωt )
V 2=2 cos (ωt )
V 3=V 1 +V 2=3 sin ( ωt ) +2 cos ( ωt)
but R sin ( ωt +α ) =(Rcosα )sin ( ωt ) +( Rsinα) cos( ωt)
Which implies that,
Rcosα =3 and Rsinα=2
Rsinα
Rcosα = 2
3 =tanα
α =tan1
( 2
3 )=33.69°
Rcosα =3 , R= 3
cosα = 3
cos 33.69 ° =3.6056
So, V 3=R sin ( ωt +α ) =3.6056 sin (ωt +33.69 °)
Document Page
Trigonometric Methods 6
Hence, we can see that frequency of V 1 =frequency of V 2=frequency of V 3= 1
ω
Question 4a
Z= Z1 Z2
Z1 +Z2
Z1 =4+ j 10
Z2 =12 j 3
Z= (4+ j 10)(12 j3)
( 4+ j10 )+(12 j 3)= 4 (12 j 3 ) j10(12 j 3)
4 +12+ j 10 j3 =78+ j108
16+ j7
Converting the numerator into polar form we get,
r = 782+¿1082
=133.2216 , θ=tan1
( 108
78 ) =54.1623° ¿
Hence, 78+ j108=¿133.2216¿ 54.1623 °
Converting the denominator into polar form we get,
r = 162+¿72
=17.4642, θ=tan1
( 7
16 )=23.6294 ° ¿
Hence, 16+ j7=¿17.4642¿ 23.6294 °
78+ j 108
16 + j 7 =¿133.2216¿ 54.1623 ° ÷17.4642¿ 23.6294 °
Z=¿7.6283¿ 30.5329 °
r =7.6283 ,θ=30.532 9
Document Page
Trigonometric Methods 7
x=rcosθ=7.6283 cos 30.5329=6.5705
y=r sin θ=7.6283 sin 30.5329=3.8754
z=x +i y =6.5705+ j 3.8754
Z=¿7.6283¿ 30.5329 °
Question 4b
Z1 =2+ j 2
Z2 =1+ j 5
Z3 = j 6
Y = 1
Z1
+ 1
Z2
+ 1
Z3
= 1
2+ j 2 + 1
1+ j 5 + 1
j6
1
j 6 = 1 × j
j 6 × j = j
6
Y = 6 ( 1+ j5 ) +6 ( 2+ j2 ) j ( 2+ j 2 ) ( 1+ j5 )
6(2+ j2)(1+ j 5)
Y = 6+ j30+ 12+ j12+ j 8+12
6(8+ j 12) = 30+ j 50
48+ j 72
30+ j50= 302+502 ¿ tan1 (50/30) ¿ 3400 ¿ 59.0362
48+ j 72= 482 +722 ¿ tan1 (72/48) ¿ 7488 ¿56.3099
Y = 3400 ¿ 59.0362 ÷ 7488 ¿56.3099
Y =¿0.6738 ¿ ( 59.0362+56.3099 )180
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Trigonometric Methods 8
Y =¿0.6738 ¿64.6539
r =0.6738 ,θ=64.6539
x=rcosθ=0.6738 cos (64.6539)=0.2884
y=rsinθ=0.6738 sin ( 64.6539 ) =0.6089
Y =x +iy=0.2884 j 0.6089
Question 5
Part a
V =40+ j3 5
I =6+3 j
Document Page
Trigonometric Methods 9
Part b
θV =tan1
( 35
40 )=tan1 0.875=41.1859 °
θi =tan1
( 3
6 )=tan1 0.5=26.5651 °
Phase difference=θV θi=41.185926.1859=14.6208 °
Part c
Power=¿ V ¿ I cos
|V |= 4 02+ 352=53.1507
|I |= 32 +62=6.7082
=Phase difference=14.6208 °
Power=|V ||I |cos =53.1507 ×6.7082 cos 14.6208 °=345 Watts
chevron_up_icon
1 out of 9
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]