Trigonometric Methods for Solving Problems - Desklib
Verified
Added on 2023/06/15
|11
|1029
|66
AI Summary
This article covers trigonometric methods for solving problems with step-by-step solutions and examples. It includes answers to problems related to angles, waves, complex numbers, and power calculations. The content is relevant to students studying trigonometry in various courses and universities.
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
Running head: TRIGONOMETRIC METHODS Trigonometric Methods Name of the student Name of the university Author’s note
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
1TRIGONOMETRIC METHODS Table of Contents Answer 1..........................................................................................................................................2 Part a............................................................................................................................................2 Part b............................................................................................................................................3 Part c............................................................................................................................................3 Answer 2..........................................................................................................................................3 Part a............................................................................................................................................3 Part b............................................................................................................................................3 Part c............................................................................................................................................3 Part d............................................................................................................................................3 Part e............................................................................................................................................4 Part f.............................................................................................................................................4 Answer 3..........................................................................................................................................4 Part a............................................................................................................................................4 Part i.........................................................................................................................................4 Part ii........................................................................................................................................4 Part iii.......................................................................................................................................5 Part b............................................................................................................................................5 Answer 4..........................................................................................................................................5 Part a............................................................................................................................................5 Part b............................................................................................................................................6 Answer 5..........................................................................................................................................7 Part a............................................................................................................................................7 Part b............................................................................................................................................7 Part c............................................................................................................................................8
2TRIGONOMETRIC METHODS
3TRIGONOMETRIC METHODS Answer 1 Part a ∠XYZ=58O ∠X=90o Hence from the⊿XYW ∠XWY=180o−90o−58o=32o Thus from the law of sines sin∠XYW WX=sin∠WXY WY=sin∠XWY XY Thus, sin58o 32=sin90o WY
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
4TRIGONOMETRIC METHODS WY=32∗sin90o sin58o=32∗1 0.848=37.73≈38 Hence, WY = 38km Part b ∠XWZ=90o ∠XWY=32o Hence,∠YWZ=∠XWZ−∠XWY=90o−32o=58o θ=∠YWZ=58o Part c From Pythagoras theoremWY2=WZ2+ZY2 382=272+ZY2 Thus,ZY2=382−272=1444−729=715 Hence, ZY≈27km Answer 2 i=15sin(100πt+0.6) Part a The amplitude A = 15 Part b The frequency (ω) of the equation of wave is 100π. Part c The period (T) of the equation of wave is (T =2π ω). Here, ω = 100π. Hence, the period of the wave equation is T =2π 100π=0.02
5TRIGONOMETRIC METHODS Part d When t= 0 the initial phase angle = 0.6 radians 2πradians=360o 0.6radians=0.6∗360o 2π=0.6∗57.29o≈34o Part e When t = 2.5s i=15sin(2.5∗100π+0.6)=15sin(125∗2π+0.6)=15sin0.6 i=15∗0.01047=0.15705 Sincesin(2πk+x)=sinx Part f When phase angle =π 2first peak occurs. Thus,100πt+0.6=π 2 Since 0.6 is in degrees converting it into radians0.6∗π 180=π 300 Thus,100πt+π 300=π/2 100t+1 300=1 2 100t=1 2−1 300=149 300=0.4967 Thus, t = 0.004967
6TRIGONOMETRIC METHODS Answer 3 Part a Part i cos(270o−θ)=cos270ocosθ+sin270o∗¿sinθ¿ ¿0∗cosθ+(−1)∗sinθ=¿−sinθ¿ Part ii sin(270o−θ)=sin270o∗cosθ−cos270o∗sinθ ¿−1∗cosθ−0∗sinθ=−cosθ Part iii cos(270o+θ)=cos270ocosθ−sin270osinθ ¿0∗cosθ−(−1)∗sinθ=sinθ Part b V1=3sinωt V2=2cosωt V3=V1+V2=Rsin(ωt+α) Rsin(ωt+α)=3sinωt+2cosωt Hence,R=√32+22=√13 α=atan2 3=33.7o ThusV3=Rsin(ωt+α)=√13sin(ωt+33.7o)=3sinωt+2cosωt The frequency of the resultant =ωtwhich is equal to the frequency of the initialωt
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
9TRIGONOMETRIC METHODS Figure 1: Argand Plot Part b The angle between voltage and real axis tanα=35 40=0.875 Hence,α=0.7188rad The angle between current and real axis tanβ=3 6=0.5 Hence,β=0.4636rad ϕ=0.7188−0.4636=0.2552rad=14.6o cos14.6o=0.9676 Part c V=40+35j The magnitude of V =√(40¿¿2+352)=√(1600+1225)=√2825=53.15¿
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser