Trigonometric Methods for Solving Problems - Desklib

Verified

Added on  2023/06/15

|11
|1029
|66
AI Summary
This article covers trigonometric methods for solving problems with step-by-step solutions and examples. It includes answers to problems related to angles, waves, complex numbers, and power calculations. The content is relevant to students studying trigonometry in various courses and universities.

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Running head: TRIGONOMETRIC METHODS
Trigonometric Methods
Name of the student
Name of the university
Author’s note

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
1TRIGONOMETRIC METHODS
Table of Contents
Answer 1..........................................................................................................................................2
Part a............................................................................................................................................2
Part b............................................................................................................................................3
Part c............................................................................................................................................3
Answer 2..........................................................................................................................................3
Part a............................................................................................................................................3
Part b............................................................................................................................................3
Part c............................................................................................................................................3
Part d............................................................................................................................................3
Part e............................................................................................................................................4
Part f.............................................................................................................................................4
Answer 3..........................................................................................................................................4
Part a............................................................................................................................................4
Part i.........................................................................................................................................4
Part ii........................................................................................................................................4
Part iii.......................................................................................................................................5
Part b............................................................................................................................................5
Answer 4..........................................................................................................................................5
Part a............................................................................................................................................5
Part b............................................................................................................................................6
Answer 5..........................................................................................................................................7
Part a............................................................................................................................................7
Part b............................................................................................................................................7
Part c............................................................................................................................................8
Document Page
2TRIGONOMETRIC METHODS
Document Page
3TRIGONOMETRIC METHODS
Answer 1
Part a
XYZ =58O
X =90o
Hence from the XYW
XWY =180o90o58o=32o
Thus from the law of sines
sin XYW
WX =sin WXY
WY = sin XWY
XY
Thus,
sin 58o
32 = sin 90o
WY

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
4TRIGONOMETRIC METHODS
WY =32sin 90o
sin 58o = 321
0.848 =37.73 38
Hence, WY = 38km
Part b
XWZ=90o
XWY =32o
Hence, YWZ= XWZ XWY =90o32o=58o
θ= YWZ=58o
Part c
From Pythagoras theorem W Y 2=W Z2+ Z Y 2
382=272+ Z Y 2
Thus, Z Y 2=382272=1444729=715
Hence, ZY 27km
Answer 2
i=15 sin(100 πt+ 0.6)
Part a
The amplitude A = 15
Part b
The frequency (ω) of the equation of wave is 100π.
Part c
The period (T) of the equation of wave is (T = 2 π
ω ). Here, ω = 100π. Hence, the period of
the wave equation is T = 2 π
100 π =0.02
Document Page
5TRIGONOMETRIC METHODS
Part d
When t= 0 the initial phase angle = 0.6 radians
2 π radians=360o
0.6 radians=0.6360o
2 π =0.657.29o 34o
Part e
When t = 2.5s
i=15 sin ( 2.5100 π +0.6 )=15 sin ( 1252 π +0.6 ) =15 sin 0.6
i=150.01047=0.15705
Since sin ( 2 πk + x ) =sin x
Part f
When phase angle = π
2 first peak occurs.
Thus, 100 πt +0.6= π
2
Since 0.6 is in degrees converting it into radians 0.6π
180 = π
300
Thus, 100 πt + π
300 =π /2
100 t+ 1
300 = 1
2
100 t=1
2 1
300 = 149
300 =0.4967
Thus, t = 0.004967
Document Page
6TRIGONOMETRIC METHODS
Answer 3
Part a
Part i
cos ( 270oθ )=cos 270o cos θ+sin 270o¿ sin θ ¿
¿ 0cos θ+ (1 )sin θ=¿sin θ ¿
Part ii
sin (270oθ ) =sin 270ocos θcos 270osin θ
¿1cos θ0sin θ=cos θ
Part iii
cos ( 270o +θ ) =cos 270o cos θsin 270o sin θ
¿ 0cos θ (1 )sinθ=sin θ
Part b
V 1=3 sin ωt
V 2=2 cos ωt
V 3=V 1 +V 2 =R sin (ωt +α )
R sin ( ωt +α ) =3 sin ωt +2 cos ωt
Hence, R= 32+22 = 13
α =atan 2
3 =33.7o
Thus V 3=R sin ( ωt + α ) = 13 sin( ωt+ 33.7o )=3 sin ωt +2 cos ωt
The frequency of the resultant = ωtwhich is equal to the frequency of the initial ωt

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
7TRIGONOMETRIC METHODS
Answer 4
Part a
Z1 =4+ j 10
Z2 =12 j 3
Z= Z1 Z2
Z1+Z2
= ( 4+ j10 )(12 j 3)
4 + j 10+12 j3
¿ 48 j 12+ j120 j2 30
16 + j 7 = 48+ j108+30
16+ j7 = 78+ j108
16+ j7
¿ ( 78+ j 108 )(16 j7)
(16+ j 7 )(16 j 7) = 1248 j546 + j 1728 j2 756
256 j2 49 = 1248+ j 1182+756
256 +49
Z=2004 + j 1182
305 =6.57+ j3.875 (rectangular form)
Polar form
r = 6.572+ 3.8752= 58.18=7.63
θ=arctan 6.57
3.875 =arctan 1.69=0.53
Thus Z=7.63 ecos 0.53 +sin0.53
Part b
Z1 =2+ j 2
Z2 =1+ j 5
Z3 = j 6
Y = 1
Z1
+ 1
Z2
+ 1
Z3
¿ 1
2+ j 2 + 1
1+ j 5 + 1
j 6
Document Page
8TRIGONOMETRIC METHODS
¿ 2 j 2
(2+ j2)(2 j2) + 1 j 5
(1+ j5)(1 j 5) + j 6
( j6)( j6)
¿ 2 j2
4 j2 4 + 1 j 5
1 j2 25 + j6
j2 36
¿ 2 j 2
4+ 4 + 1 j5
1+25 j 6
36
¿ 2 j 2
8 + 1 j5
26 j
6
¿ 0.25 j 0.25+0.038 j 0.19 j0.16
¿ 0.288 j 0.6
Polar form
r = 0.2882+0.62= 0.083+0.36= 0.443=0.67
θ=arctan 0.6
0.288 =1.13 rad=64.7o
Z=0.67 ecos (64.7 o )+ sin(64.7¿¿o )¿
Answer 5
Part a
V =40+ j35
I =6+ j3
Document Page
9TRIGONOMETRIC METHODS
Figure 1: Argand Plot
Part b
The angle between voltage and real axis
tan α= 35
40 =0.875
Hence, α=0.7188 rad
The angle between current and real axis
tan β= 3
6 =0.5
Hence, β=0.4636 rad
ϕ =0.71880.4636=0.2552 rad=14.6o
cos 14.6o=0.9676
Part c
V =40+35 j
The magnitude of V = (40¿¿ 2+352 )= (1600+1225)= 2825=53.15¿

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
10TRIGONOMETRIC METHODS
I =6+3 j
The magnitude of I = 62 +32= 36+ 9= 45=6.71
Hence, P=|V ||I |cos ϕ=53.156.710.9676=345.08 watt
1 out of 11
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]