Ladder Heights, Trigonometric Graphs, Resultant Forces, and Volume Calculations: Summary of Given Data

Verified

Added on  2023/04/25

|10
|609
|447
AI Summary
Task 1 involves calculating the height, length, and angle of a ladder. Task 2 displays trigonometric graphs. Task 3 involves calculating the resultant force of two components and the length and angle of a tie. Task 4 calculates the volume and surface area of an open cylinder and the volume of a triangular prism.
tabler-icon-diamond-filled.svg

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Trigonometry Assignment
Student’s Name
Institution Affiliation
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Task 1
Part a
I. How far up does the ladder reach
Using the sine rule , 1.4
Sinθ = 5
sin 90
Sinθ=1.4 sin 90
5 =0.28
θ=sin1 0.28=16.26 °
Wall length=5 cos 16.26 °=4.80 m
We obtain the same answer using Pythagoras theorem as follows.
x= 521.42=4.8 m
II. Minimum length of the ladder. Given that the value of height =4.5 and the
θ=90 °74 °=16°
cos ( 16 ° ) = 4.5
Ladder Length
Document Page
Ladder Length= 4.5
cos ( 16 ° ) =4.68 m
III. The angle at which the ladder meets the horizontal ground, given that the ration for
ladder horizontal to vertical is 1:4
Tanθ= Opposite
Adjacent = 4
1 =4
θ=tan1 (4)=75.96° 76.0 °
Part b
I. 150 ° to radian
180 °=π radian,
Therefore, 150 °will be given by
150°
180° π =5
6 π radian
II. Area of the region covered
Area=rad
2 π π r2
¿ 5 π
62 π π122
Document Page
¿ 188.50 km2
III. Perimeter of the region covered
Perimeter= rad
2 π 2 πr +12+12
¿ 5 π
62 π 2π12+24
¿( 31.42+24 ) km
¿ 55.42 km
Task 2
Trigonometric graphs
Angle in Radians(x) 0 π
3
2 π
3
π 4 π
3
5 π
3
2 π
y=sinx 0 1 0.8660 0 -0.866 -
0.866
0
y=cosx 1 0.5 -0.5 -1 -0.5 0.5 1
y=tanx 0 1.732 -1.732 0 1.732 -
1.732
0
A graph of y=sin x
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
A graph of y=cos x
A graph of y=tan x
Document Page
Task 3
a. Task
Document Page
Vertical Component of first force=50 sin 45 °=35.3553 kN
Horizontal Component of first force=50 cos 45°=35.3553 kN
The second force has horizontal component only that is equal to 50 kN .
Total Vertical Component of the resultant force R=35.3553 kN + 0=35.3553 kN
Total Horizontal Component of the resultant force R=35.3553 kN +50 kN =85.3553 kN
Total Resultant force Using PythagorasTheorem , R= 35.35532 +85.35532
¿ 8535.5244762
¿ 92.3879 kN
tanr °= 35.3553
85.3553 =0.4141136
r °=tan1 0.4141136=22.5 °
b. Task
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Cosine rule: c2=a2+b22 abcosC
In the above case, the length of the tie will be given by
( length ) 2=5.12 ×62 2× 5.1× 6 ×cos 28=7.9736
length= 7.9736=2.8238 m
The value of θ, will be given by
6
sinα = 2.8238
sin 28
sinα= 6 sin 28
2.8238 =0. 99753
α =sin1 0. 99753=85.97 °
The θ will be given by
θ=180° 85.97 °=94.03 °
Task 4
I. Open cylinder:
Volume of the open cylinder
Document Page
V =π r2 l
¿ π422150
¿ 831 , 265.416 mm3
Surface area of an open cylinder:
S . A=π r2 +22 πrl
¿ π422+2π42150
¿ 5 , 541.77+39 ,584.06=45 ,125.84 mm2
II. Triangular prism
Volume of a triangular prism is given by:
V = 1
2 ( bh )L
¿ 1
2 ( 1672 )38
¿ 21 , 888 mm3
Surface area of the triangular prism
S . A=bh+lb+2 ls
s= 722 +82 =72.443 mm
S . A=16 ×72+38 ×16 +2× 38 ×72.443=¿ 7265.668 mm2
III. Sphere
Document Page
Volume of sphere is given by:
V = 4
3 π r3= 4
3 π253=65 , 449.85 mm3
Surface area of sphere is given by:
S . A=4 π r 2=4π252=7 , 853.98 mm2
chevron_up_icon
1 out of 10
circle_padding
hide_on_mobile
zoom_out_icon
logo.png

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]