Ladder Heights, Trigonometric Graphs, Resultant Forces, and Volume Calculations: Summary of Given Data

Verified

Added on  2023/04/25

|10
|609
|447
AI Summary
Task 1 involves calculating the height, length, and angle of a ladder. Task 2 displays trigonometric graphs. Task 3 involves calculating the resultant force of two components and the length and angle of a tie. Task 4 calculates the volume and surface area of an open cylinder and the volume of a triangular prism.

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Trigonometry Assignment
Student’s Name
Institution Affiliation

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Task 1
Part a
I. How far up does the ladder reach
Using the sine rule , 1.4
Sinθ = 5
sin 90
Sinθ=1.4 sin 90
5 =0.28
θ=sin1 0.28=16.26 °
Wall length=5 cos 16.26 °=4.80 m
We obtain the same answer using Pythagoras theorem as follows.
x= 521.42=4.8 m
II. Minimum length of the ladder. Given that the value of height =4.5 and the
θ=90 °74 °=16°
cos ( 16 ° ) = 4.5
Ladder Length
Document Page
Ladder Length= 4.5
cos ( 16 ° ) =4.68 m
III. The angle at which the ladder meets the horizontal ground, given that the ration for
ladder horizontal to vertical is 1:4
Tanθ= Opposite
Adjacent = 4
1 =4
θ=tan1 (4)=75.96° 76.0 °
Part b
I. 150 ° to radian
180 °=π radian,
Therefore, 150 °will be given by
150°
180° π =5
6 π radian
II. Area of the region covered
Area=rad
2 π π r2
¿ 5 π
62 π π122
Document Page
¿ 188.50 km2
III. Perimeter of the region covered
Perimeter= rad
2 π 2 πr +12+12
¿ 5 π
62 π 2π12+24
¿( 31.42+24 ) km
¿ 55.42 km
Task 2
Trigonometric graphs
Angle in Radians(x) 0 π
3
2 π
3
π 4 π
3
5 π
3
2 π
y=sinx 0 1 0.8660 0 -0.866 -
0.866
0
y=cosx 1 0.5 -0.5 -1 -0.5 0.5 1
y=tanx 0 1.732 -1.732 0 1.732 -
1.732
0
A graph of y=sin x

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
A graph of y=cos x
A graph of y=tan x
Document Page
Task 3
a. Task
Document Page
Vertical Component of first force=50 sin 45 °=35.3553 kN
Horizontal Component of first force=50 cos 45°=35.3553 kN
The second force has horizontal component only that is equal to 50 kN .
Total Vertical Component of the resultant force R=35.3553 kN + 0=35.3553 kN
Total Horizontal Component of the resultant force R=35.3553 kN +50 kN =85.3553 kN
Total Resultant force Using PythagorasTheorem , R= 35.35532 +85.35532
¿ 8535.5244762
¿ 92.3879 kN
tanr °= 35.3553
85.3553 =0.4141136
r °=tan1 0.4141136=22.5 °
b. Task

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Cosine rule: c2=a2+b22 abcosC
In the above case, the length of the tie will be given by
( length ) 2=5.12 ×62 2× 5.1× 6 ×cos 28=7.9736
length= 7.9736=2.8238 m
The value of θ, will be given by
6
sinα = 2.8238
sin 28
sinα= 6 sin 28
2.8238 =0. 99753
α =sin1 0. 99753=85.97 °
The θ will be given by
θ=180° 85.97 °=94.03 °
Task 4
I. Open cylinder:
Volume of the open cylinder
Document Page
V =π r2 l
¿ π422150
¿ 831 , 265.416 mm3
Surface area of an open cylinder:
S . A=π r2 +22 πrl
¿ π422+2π42150
¿ 5 , 541.77+39 ,584.06=45 ,125.84 mm2
II. Triangular prism
Volume of a triangular prism is given by:
V = 1
2 ( bh )L
¿ 1
2 ( 1672 )38
¿ 21 , 888 mm3
Surface area of the triangular prism
S . A=bh+lb+2 ls
s= 722 +82 =72.443 mm
S . A=16 ×72+38 ×16 +2× 38 ×72.443=¿ 7265.668 mm2
III. Sphere
Document Page
Volume of sphere is given by:
V = 4
3 π r3= 4
3 π253=65 , 449.85 mm3
Surface area of sphere is given by:
S . A=4 π r 2=4π252=7 , 853.98 mm2
1 out of 10
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]