This JSON response provides solutions to vector calculus problems including finding scalar potential function, using Stokes theorem, Gauss divergence theorem, and Fourier series. The solutions are explained step-by-step with mathematical equations and integrals.
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
Solution Q1) F(x, y, z) = (2xz + zsiny, xzcosy, x2+ xsiny) Curl F = |^i^j^k ∂ ∂x ∂ ∂y ∂ ∂z ∂xz+zsinyxzcosyx2+xsiny| = (xcosy – xcosy)^i−¿ =0^i−0^j+0^k = 0 F is conservative in R3 To determine a scalar potential function ∂f ∂y=¿2xz + zsiny, ∂f ∂y=xzcosy, ∂f ∂y=x2+xsiny Integrating∂f ∂y=¿2xz + zsiny f = x2z = xysiny + g(y,z) The partial derivative of f = x2z = xysiny + g(y,z) with respect to y ∂f ∂y=¿xycosy +∂g(y,z) ∂y Comparing to∂f ∂y=xzcosy xzcosy +∂y ∂y=xzcosy ∂y ∂y= 0
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
g(y, z) = h(z) Partial derivative off = x2z = xysiny + g(y,z) with respect to z ∂f ∂z=x2+xsiny+h'(z) Comparing this to∂f ∂y=x2+xsiny x2+xsiny+h'(z)=x2+xsiny = h’(z) = 0 = h(z) = C where C is a constant. f(x, y, z) = x2z + xzsiny + C By fundamental theorem of line integral ∫ C ❑ F.dr=f(−1,0,4)−f(1,0,0) f(-1, 0, 4) = 4 + C f(1, 0, 0) = 0 + C then f(-1, 0, 4) – f(1, 0, 0) = 4 therefore, ∫ C ❑ F.dr=4 Q2) Using stokes theorem ∬ S ❑ (∇∗F)∗nds=∫ C ❑ F.dr The parabolic z = 4 – x2– y2intersectsxy- plane as a circle x2+ y2= 4 r(t) = (2cost, 2sint, 0), 0 > t≤2π
r’(t) = (-2sint, 2cost, 0) ∫ C ❑ F.dr=∫ t ❑ F(r(t))∗r'(t)dt =∫ t ❑ (2sint¿e0−2sint¿,2cost∗e0,1+4sintcoste0)(−2sint,2cost,0)∗dt¿ =∫ t ❑ (0,2cost¿,1+4sintcost)(−2sint,2cost,0)dt¿ =∫ t ❑ 4cos2tdt=4∫ t ❑1+cos2t 2dt =2[(t)02π+ (sin2t 2)02π] = 2[2π+0¿ =4π =∬ S ❑ (∇∗F)∗nds=4π Q3) By Gauss divergence theorem ∬ S ❑ F.^nds=∭ V ❑ ¿⃗Fdv, where V is the volume bounded by sphere S divF =∇∗F=∂ ∂x(x)+∂ ∂y(2y)+∂ ∂z(xz2) = 1 + 2 + 2xz = 3 + 2xz ∬ S ❑ F.^nds=∭ V ❑ (3+2xz)dxdydz…………….eq1 Converting this to spherical polar coordinate system, then
π4 90=1 14+1 24+1 34+1 44… Q5) f(t) =∑ n=−∞ ∞ Cn*einω0t Cn=1 π∫ −π π f(t)einω0tdt Calculate Cnfor the given function Cn=1 π∫ −π π te−2te−inω0tdt Integrate by parts∫fg'=fg−∫f'g f(t) = t:g’(t) =e−inω0t−2t The integral will be Solving the indefinite integral Cn=1 π¿ U = -inω0t – 2t dt =1 −inω0−2du Cn=1 π[−te−inω0t−2t inω0+2−e−inω0t−2t (−inω0+2)(inω0+2)]-ππ Cn=1 π(−(πe4πnω0–2iπe4π+ie4π)e2iπnω0+πnω0−2iπ−i¿(e−iπnω0−2π)¿¿in2ω20+4nω0−4i) Cn=−((πe4πnω0–2iπe4π+ie4π)e2iπnω0+πnω0−2iπ−i¿(e−iπnω0−2π)¿¿in2ω20π+4nω0π−4iπ) From this coefficient we can be able to find the Fourier complex exponential series