Solutions to Vector Calculus Problems

Verified

Added on  2023/06/03

|7
|1565
|181
AI Summary
This JSON response provides solutions to vector calculus problems including finding scalar potential function, using Stokes theorem, Gauss divergence theorem, and Fourier series. The solutions are explained step-by-step with mathematical equations and integrals.

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Solution
Q1)
F(x, y, z) = (2xz + zsiny, xzcosy, x2 + xsiny)
Curl F =
| ^i ^j ^k

x

y

z
xz + zsiny xzcosy x2+xsiny |
= (xcosy – xcosy) ^i¿
= 0 ^i0 ^j+0 ^k
= 0
F is conservative in R3
To determine a scalar potential function
f
y =¿2xz + zsiny,
f
y =xzcosy ,
f
y =x2 +xsiny
Integrating f
y =¿2xz + zsiny
f = x2z = xysiny + g(y,z)
The partial derivative of f = x2z = xysiny + g(y,z) with respect to y
f
y =¿xycosy + g ( y , z )
y
Comparing to f
y =xzcosy
xzcosy + y
y = xzcosy
y
y = 0

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
g(y, z) = h(z)
Partial derivative of f = x2z = xysiny + g(y,z) with respect to z
f
z =x2 + xsiny+h' (z)
Comparing this to f
y =x2 + xsiny
x2+ xsiny+h' ( z )=x2+ xsiny
= h’(z) = 0
= h(z) = C where C is a constant.
f(x, y, z) = x2z + xzsiny + C
By fundamental theorem of line integral

C

F . dr=f (1 , 0 , 4 )f (1 , 0 ,0)
f(-1, 0, 4) = 4 + C
f(1, 0, 0) = 0 + C
then f(-1, 0, 4) – f(1, 0, 0) = 4
therefore,

C

F . dr=4
Q2)
Using stokes theorem

S

( F )nds=
C

F .dr
The parabolic z = 4 – x2 – y2 intersects xy- plane as a circle x2 + y2 = 4
r(t) = (2cost, 2sint, 0), 0 > t 2 π
Document Page
r’(t) = (-2sint, 2cost, 0)

C

F . dr=
t

F ( r ( t ) )r ' ( t ) dt
=
t

(2 sin t ¿ e02 sin t¿, 2 cos te0 ,1+4 sin t cos t e0)(2 sin t ,2 cos t ,0)dt ¿
=
t

(0,2 cos t¿ ,1+4 sin t cos t) (2 sin t , 2 cos t ,0 ) dt ¿
=
t

4 cos2 t dt=4
t
1+cos 2 t
2 dt
= 2[(t)02π + ( sin 2t
2 )02π]
= 2[2 π + 0 ¿
= 4 π
=
S

( F )nds=4 π
Q3)
By Gauss divergence theorem

S

F . ^n ds=
V

¿ F dv, where V is the volume bounded by sphere S
divF = F=
x ( x ) +
y ( 2 y ) +
z ( x z2 )
= 1 + 2 + 2xz
= 3 + 2xz

S

F . ^n ds=
V

( 3+2 x z ) dxdydz …………….eq1
Converting this to spherical polar coordinate system, then
Document Page
x – 2 = rsin θcos , y = rsinθcos , z = rcosθ, 0 r 1 , 0 θ π , 0 <2 π
3 + 2xz = 3 + 2(2 + rsin θcos ) rcoθ
=3 = 4rco θ + 2rsinθcosθcos
|J| = Jacobin = r2sinθ

S

F . ^n ds=
V

( 3+2 xz ) dxdydz
=
0
1

0
π

0
2 π
( 3+ 4 rcosθ+2 rsinθcos cosθ ) J d dθdr
=
0
1

0
π

0
2 π
( 3+ 4 rcosθ+2 rsinθcos cosθ ) r2 sinθd dθdr
=
0
1

0
π

0
2 π
( 3 r2 sinθ +4 r3 sinθcosθ +2 r3 sin2 θ cos cosθ ) d dθdr
=
0
1

0
π
¿ ¿ ¿02π + (4 r3 sinθcosθ )( )02π + 2r3sin2
θcos θ(sin ¿02π)dθdr
Since sin2π= 0 = sin0
=
0
1

0
π
2 π ( 3 r2 sinθ+ 4 r3 sinθcosθ ) dθdr
= 2π
0
1

0
π
( 3 r 2 sinθ+ 42 sin2 θ ) dθdr
Therefore, sin2 θ=2 sinθcosθ
= 2π
0
1
¿ ¿0π + 2r3(cos 2 θ
2 ¿0π]dr
Since cosπ = -1, cos0 = 1, cos2π = 1
= 2π
0
1
( 3 r2 ( cosπcos 0 ) r3 ( cos 2 πcos 0 ) ) dr

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
= 2π
0
1
3 r 2 ( 11 ) r3 (11)¿ dr ¿
= 2π
0
1
6 r2 dr
= 12 π
0
1
r2 dr
= 12 π [ r 3
3 ]10
= 12π[1/3 – 0]
= 4π
Q4)
a) We are given f(x) = x4 - 2π2 x2 ,π x π
F(x) = x4 - 2 π2 x2
f(-x) = (-x)4-2π2(-x)2 = x4 -2π2x2
it is a exists even function
f(x) = a 0
2 +
n=1

ancosnx
bn = 0
a0 = 2
π
0
π
f ( x ) dx= 2
π
0
π
( x42 π2 x2 ) dx
= 2
π ( x5
5 2 π 2 x3
3 )0π
= 2
π ( 3 π 510 π 5
15 )
= ( 14 π4
15 )
Document Page
an = 2
π
0
π
f ( x ) cosnxdx
= 2
π
0
π
( x42 π2 x2 ) cosnxdx
= 2
π ¿– 24x cosnx
n4 + 24sinnx
n5 ¿0π
= 2
π [0+0024 π (1 )n
n4 +00]
= 48 (1 )n
n4 = 48 (1 )n+ 1
n4
Required fourier series
F(x) = a 0
2 +
n=1

ancosnx
= 7 x4
15 +
n=1
48 (1 )n+1
n4 cosnx
x4 - 2 π 2 x2=7 x4
15 48
14 cosx 48
24 cos 2 x + 48
34 cos 3 x 48
44 cos 4 x +
b) put x = π
x4 - 2 π 2 x2=48( 1
14 + 1
24 + 1
34 + 1
44 )
15 π4 +7 π4
15 1
48 = 1
14 + 1
24 + 1
34 + 1
44
8 π4
15 1
48 = 1
14 + 1
24 + 1
34 + 1
44
Document Page
π4
90 = 1
14 + 1
24 + 1
34 + 1
44
Q5)
f(t) =
n=

Cn*einω0 t
Cn = 1
π
π
π
f (t)einω0 t dt
Calculate Cn for the given function
Cn = 1
π
π
π
t e2 t einω 0 t dt
Integrate by parts fg '=fgf ' g
f(t) = t:g’(t) = einω0 t 2 t
The integral will be
Solving the indefinite integral
Cn = 1
π ¿
U = -in ω0t – 2t
dt = 1
inω02 du
Cn = 1
π [ t einω0 t 2t
inω 0+2 einω0 t 2 t
(inω 0+2)(inω 0+2) ]-ππ
Cn = 1
π (( π e4 π 0 2i π e4 π +i e4 π )e2 iπnω 0 +πnω 02 i¿ (eiπnω 02 π )¿¿ i n2 ω2 0+ 4 04 i)
Cn= ( ( π e4 π 0 2i π e4 π +i e4 π ) e2 iπnω 0+ πnω 02 i¿ (eiπnω 02 π )¿¿ i n2 ω2 0 π +4 0 π4 i π )
From this coefficient we can be able to find the Fourier complex exponential series
1 out of 7
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]