Algebra Problems: Simplifying, Solving, and Graphing

Verified

Added on  2020/11/23

|17
|2400
|302
Homework Assignment
AI Summary
This algebra assignment presents solutions to a variety of problems covering fundamental concepts. The assignment begins with simplifying radical expressions and solving radical equations, followed by finding the domain of functions and solving exponential equations. It also includes problems on exponents, logarithms, rational expressions, and systems of equations. Additionally, the assignment covers graphing quadratic functions, determining intercepts, vertex, and solving for x-axis interception points. Finally, the assignment concludes with graphing piecewise functions and solving miscellaneous algebra problems. The solutions are detailed and step-by-step, offering a comprehensive guide to understanding and solving the presented algebraic challenges. This resource is designed to assist students in grasping key algebraic concepts and improving their problem-solving skills.
Document Page
Algebra Problems
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Q1. Simplify the questions??
a). 2√128
Ans: √{27}
√{26.2}
23 √{2}
=8 √{2}
b). √{9 a8}b3
Ans: √{9}√{a8}
3√{a8}
= 3a {8}/{2}}
= 3 a4 b3
C). 3√{24 a4}b8
Ans: 2[3]√3 b8 a{{4}/{3}}
d). √{{75}/{a6}}
Ans: √{52. 3}
√{3}√{52}
{5√{3}}/{a3}
e) {5}/√{7}}
Ans: frac5√{7}√{7}√{7}}
{5√{7}}/{7}
f).{3 y}√{4-{7}}
Ans: {3 y}/{4-√{7}}={(4+√{7})y}/{3}
3 y(4+√7)/(4-√7)(4+√7) : Multiply by the conjugate
(4-V7)(4+V7)= 9
= 3(4+V7)y/9
= (4+V7)y/3
Document Page
Q2. Solve following radical equations??
a). √{7-5x}=8
Ans: (√{7-5x})2=82
7-5x=64
x=-{57}/{5}
b) √{2y+15}=√{4y+1}
Ans: √{2y+15})^2=(√{4y+1})2
2y+15=4y+1
=> y=7
c). [3]√{3x+4+2}=0
Ans : [3]√{3x+4+2}3=03
3x+6=0
x=- 2
d). (x-3)2/3=4
Ans: 3(x-3)2/3 =4. 3
2(x-3)=12
frac{2(x-3}{2}={12}/{2}
x=9
Q3 Find Domain of following function??
a). ∫(x)= x{2}+4
Ans: ∫ xdx
frac{x{1+1}}{1+1}
= frac{x2}{2}
= frac{x2}{2}+C
b). ∫(x)= {1}/{x}+{2}/{x+2}
Document Page
Ans: ∫xdx
{x{1+1}}/{1+1}
= {x2}/{2}+C
c). g(x)= {x}/(x2-5 X)}
Ans: Domain of {x}/(x2-5 X)} [ Sol: x<0 or 0<x<5 or x>5]
Asymptotes of {x}/(x2-5 X)} : Vertical x=0, x=5, Horizontal: y=0
Extreme Points of {x}/(x2-5 X)} : None
d). h(x)= √4-x
Ans: √4-x : X intercepts: (4,0), Y intercepts: (0,2)
Extreme Points of √4-x : Minimum(4,0)
e) g(x)= √{x^2}+1
Ans: Asymptotes of √{x^2}+1 : Horizontal y= x+1, y=-X+1
= √{x^2}+1 : minimum (0,1)
Q 4. Solve the exponential equations?
a). ({1}/{2})x/3=1/4
Ans {1}/{2})x/3.4 =1
{1}/{2})x/3.4}/{4}={1}/{4}
= (1/2){f{x}/{3}}=(2^2)^{-1}
= 2-1. {x}/{3}=2^{2(-1)}
= -{x}/{3}=- 2
=> x= 6
b). 3. 4x/2=96
Ans: 3.4x/2=96
4x/2=32
(22)x/2=32
(22)x/2=32
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
2.{x}/{2}=5
x= 5
c) ex2 +5x =e-6
=x2+5x=-6
Ans: X=-2, x=-3
d) 3(5-x/4)=15
Ans: 3(5-fx/4)=15
= 5^-x/4=5
= -{x/4}=1
= x=-4
3. Direction y= -3 x
IV Exponents?
1. (81/64)1/2
Ans:811/2641/2
(81/8)1/2
= 9/8
2. (27-2)1/3
Ans: (-2){1}/{3}
-2.{1}/{3}
= {2}/{3}
= 272/3
=1/9
3. -24
Ans: -24=-15
= -16
4. (-2)4
Document Page
Ans: =24
=16
5. (4-1+2-1})2
Ans: {1}/{4}+{1}/{2})2
{3}/{4})2
{3^2}/{42}
={9}/{16}
6. (13y)-1
Ans : {1}/{13y}
7. 13y-1
Ans : 13.{1}/{y}
{1/13}/{y}
= {13}/{y}
8. 8-1. 80
Ans : 8-1.1
= 1.{1}/{8}
= {1}/{8}
9. (3{-5}.3-10}/{(32}
Ans: {0.3-10/37
1/0.310/37
={1}/{0.0129140163}
= 77.43524
10. 3-3.0.3-10/32
Ans: 3-3/32 = 1/32-(-3)
= 0.3-10/ 35
Document Page
=0.3-10/35 : Apply exponent rule : xa/xb = 1/xb-a
= 1/35. 0.310
= 1/0.0014348907
= 696.91719
V.Logarithms
i. Factor and cancel
1. 3log2x=12
=3log2(x)/3= 12/3 (divide both sides by 3)
=log2(x)= 4
Apply rule a= logb (bª)
4= log2(24)= log2(16)
Log2(x)= log2(16)
x=16
2. log5125=x
x= log5125
x= log5 (53)
Apply rule loga(xb )= b.loga(x)
x= log5(53)= 3log5(5)
x= 3log5(5)
Apply rule: loga(a)=1
x=3*1
x=3
3. 3+4logx4=5
= 3+4logx(4)=5
= 3+4logx(4)-3=5-3 (subtract bith sides by 3)
= 4logx(4)=2
= 4logx(4)/4=2/4 (divide both sides by 4)
= logx(4)= 1/2
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Apply rule: loga(b)= In (b)/ In (a)
logx (4)= In (4)/ In (x)
In (4)/ In (x)= 1/2
In (4)*2= In (x)*1
In (x)*1= In (4)*2
In (x)= In (4)*2
(Simplify In (4)*2: 4In (2))
In (x)= 4In (2)
In (x)= In (16)
x=16
Rational Expression
i. Factor and cancel.
1. a3-a2-6a/a2-9
=a(a+2) (a+3)/a2-9 [factor a3-a2-6a: a(a+2) (a+3)]
= a(a+2)/a+3/(a+3) (a-3) [factor a2-9: (a+3) (a-3)]
= a(a=2)/a+3
2. a3-2a2+a-2/2-a
=(a-2)(a2+1)/-a+2 [factor a3-2a2+a-2: (a-2)(a2+1)]
=-(a2+1)
3. z3+8/z2-2z+4
= z3+8/z2-2z+4 [factor z3+8: (z+2)(z2-2z+4 ]
=(z+2)(z2-2z+4/ z2-2z+4)
=(z+2)
4. 4ab2/ab2+a
= 4ab2/a(b2+1)
=4b2/(b2+1)
Document Page
5. x2+6x+8/x2-4
= (x+2) (x+4)/x2-4 [Factor x2+6x+8: (x+2) (x+4)]
= (x2+2x) + (4x+8) [Break expression into groups]
= x(x+2) + 4(x+2) [Factor (x2+2x): x(x+2)), (Factor (4x+8): 4(x+2)]
= (x+2) (x+4) [common factor: (x+2)]
=(x+2) (x+4)/ x2-4
= (x+2) (x+4)/(x+2) (x-2) [Factor (x2+4): (x+2) (x-2)]
= (x+4)/(x-2)
ii. Perfrom the operation and write the result in reduced form
1. (a-1/a)*( a2/a2-1)
=((a-1)a2)/a( a2-1) [Multiply Fraction a/b* c/d= a*c/b*d]
=(a(a-1))/( a2-1)
=(a(a-1))/( a-1)(a+1) [Factor a2-1: ( a-1)(a+1)]
= a/(a+1)
2. ( a2-9/(a+2))*((a2+4a+4)/ a2-a-6)
= ((a2+4a+4)/ (a2-a-6))= (a+2)/(a-3)
=a2-9/(a+2)*(a+2)/(a-3)
=a2-9/(a+2)/(a+2)/(a-3) [ Multiply Fraction a/b* c/d= a*c/b*d]
= a2-9/(a-3)
= (a+3)(a-3)/(a-3)
=a+3 [Factor a2-9: ( a+3)(a-3)]
3. (x+4/x2)+ (x2-16/x)
=(x+4/x2 )+ ((x2-16)x/x2)
Document Page
= x+4+(x2-16)x/x2
=x2-15x+4/x2
iii. Get a common denominator
1. (2/2x+1)-( 5/(2x+1)2)
= 2*(2x+1)/(2x+1)2-( 5/(2x+1)2) [ Least Common Multiplier of 2x+1, (2x+1)2:(2x+1)2]
= 2 (2x+1)-5/(2x+1)2
=4x-3/(2x+1)2 [Expand 2 (2x+1)-5: 4x-3]
2. 3- (4/x+2)
= 3 (x+2)/x+2-(4/x+2) [Convert element of fraction: 3= 3 (x+2)/x+2]
=3 (x+2)-4/ x+2
=3x+2/x+2
3. (3/x-2)+(5/2-x)
=3(-x+2)/(x-2)(-x+2) + 5(x-2)/(2-x)(x-2)
=3 (-x+2)+5(x-2)/(x-2)(-x+2)
=2(-x+2)/(x-2)(-x+2)
=-(2/x-2)
4. (y/y2+4y+4)+(3/y2+y-2)
= (y/(y+2)2)+ 3/( y2+y-2)
=(y/(y+2)2)+ 3/( y-1)(y+2)
=y(y-1)+3(y+2)/(y+2)2 (y-1)
= (y2+2y+6)/(y+2)2(y-1)
iv. Get a common denominator in the numerator and multiply by reciprocal, or mutliply by
LCD/LCD.
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
1. (1-y/3)/ 3-y
=(3-y/3)/3-y
= 3-y/ 3(-y+3)
=1/3
2. ((1/y+1)-1/y)/ (1/y+1)
=((1/y+1)-(1/y) (y+1))/1
=(-(1/y(y+1))(y+1)/1
=-((1/y(y+1)(y+1)/1
=-1/y/1
= -1/y
3. ((x/x-1)+1)/x+2/x
=x((x/x-1)+1)/(x+2)
=(2x-1/x-1)x/(x+2)
=x(2x-1)/(x-1)(x+2)
Document Page
Q Given y= -3x2+x+2, Find and Graph
a. Y- intercepts
b. Vertex
c. X- intercepts
Ans: 3x2+y= x+2
Y= -(X-1)(3x+2)
3X2- x+y-2= 0
X= -2/3, Y= 1
For parabola ax2+bx+c the vertex x equal -b/2a
a= -3, b=1
x= -1/2(-3)
x=1/6
Putting equation x=1/6
y= -3(1/6)2+ 1/6+2
y= 25/12
Vertex (1/6,25/12)
X- axis interception points of -3x2+x+2 : (-2/3, 0), (1,0)
Y- axis interception point of -3x2+x+2 : (1,0)
Vertex of -3x2+x+2 : Maximum (1/6, 25/12)
chevron_up_icon
1 out of 17
circle_padding
hide_on_mobile
zoom_out_icon