Control Systems Engineering: Analyzing Boeing 747 Dynamics
VerifiedAdded on 2023/05/31
|5
|599
|145
Homework Assignment
AI Summary
This assignment focuses on the analysis of control systems using linear models for the Boeing 747. It begins by defining linear models for the longitudinal dynamics of the Boeing 747 at Mach 0.8 and 20,000 ft, presenting two different system models (System #1 and System #2) represented by matri...

Control Systems
clear
close all
clc
%Linear Models for the Boeing 747 are:
%Longitudinal dynamics at Mach 0.8 and 20,000 ft
a1=[-0.00643 0.0263 0 -32.2];
a2=[-0.0941 -0.624 820 0 ];
a3=[-0.000222 -0.00153 -0.668 0];
a4=[0 0 1 0];
disp('-----------------------------------------------------------')
disp('System #1')
A=[a1;a2;a3;a4];
figure(1)
testBoeing(A);
%System #2
b1=[-0.0558 -0.9968 0.0802 0.0415];
b2=[0.598 -0.115 -0.0318 0];
b3=[-3.05 0.388 -0.465 0];
b4=[0 0.0805 1 0];
B=[b1;b2;b3;b4];
disp('-----------------------------------------------------------')
disp('System #2')
figure(2)
testBoeing(B);
-----------------------------------------------------------
System #1
Boeing 747 System Model #1:
EigenValues:
0.0130 0.0130 0.9894 0.9894
0.9999 0.9999 0.1451 0.1451
0.0014 0.0014 0.0000 0.0000
0.0011 0.0011 0.0004 0.0004
EigenVector:
1.2940 0 0 0
0 1.2940 0 0
0 0 0.0102 0
clear
close all
clc
%Linear Models for the Boeing 747 are:
%Longitudinal dynamics at Mach 0.8 and 20,000 ft
a1=[-0.00643 0.0263 0 -32.2];
a2=[-0.0941 -0.624 820 0 ];
a3=[-0.000222 -0.00153 -0.668 0];
a4=[0 0 1 0];
disp('-----------------------------------------------------------')
disp('System #1')
A=[a1;a2;a3;a4];
figure(1)
testBoeing(A);
%System #2
b1=[-0.0558 -0.9968 0.0802 0.0415];
b2=[0.598 -0.115 -0.0318 0];
b3=[-3.05 0.388 -0.465 0];
b4=[0 0.0805 1 0];
B=[b1;b2;b3;b4];
disp('-----------------------------------------------------------')
disp('System #2')
figure(2)
testBoeing(B);
-----------------------------------------------------------
System #1
Boeing 747 System Model #1:
EigenValues:
0.0130 0.0130 0.9894 0.9894
0.9999 0.9999 0.1451 0.1451
0.0014 0.0014 0.0000 0.0000
0.0011 0.0011 0.0004 0.0004
EigenVector:
1.2940 0 0 0
0 1.2940 0 0
0 0 0.0102 0
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

0 0 0 0.0102
0.0003 0.0028 2.7821 0.2278
t1 =
0.0042 0.1077 -0.9885 -0.7005
-1.0000 -0.9942 0.1510 0.7137
-0.0049 -0.0013 0.0000 0.0006
-0.0013 -0.0025 0.0005 0.0039
t2 =
3.7340 0 0 0
0 0.5130 0 0
0 0 0.0045 0
0 0 0 0.1450
ans =
3.7340
0.5130
0.0045
0.1450
L =
1.0e+05 *
-3.7980
-1.8371
0.0017
0.0002
ans =
-10.0000
-9.0000
-5.6450
-0.0045
0.0003 0.0028 2.7821 0.2278
t1 =
0.0042 0.1077 -0.9885 -0.7005
-1.0000 -0.9942 0.1510 0.7137
-0.0049 -0.0013 0.0000 0.0006
-0.0013 -0.0025 0.0005 0.0039
t2 =
3.7340 0 0 0
0 0.5130 0 0
0 0 0.0045 0
0 0 0 0.1450
ans =
3.7340
0.5130
0.0045
0.1450
L =
1.0e+05 *
-3.7980
-1.8371
0.0017
0.0002
ans =
-10.0000
-9.0000
-5.6450
-0.0045

ans =
-173.47 (s-173.2) (s+9.249) (s+0.03573)
--------------------------------------------
(s-31.69) (s+0.03047) (s^2 + 2.464s + 47.46)
Continuous-time zero/pole/gain model.
Testing for system controllability:
System is controllable
-----------------------------------------------------------
System #2
Boeing 747 System Model #1:
EigenValues:
0.2259 0.2259 0.0172 0.0067
0.1544 0.1544 0.0118 0.0404
0.6670 0.6670 0.4895 0.0105
0.6930 0.6930 0.8717 0.9991
EigenVector:
0.9472 0 0 0
0 0.9472 0 0
0 0 0.5627 0
0 0 0 0.0073
0.1343 0.1530 0.0137 0.0070
t1 =
0.2333 -0.1195 0.0051 -0.0199
-0.9160 0.1402 0.0414 0.0563
-0.3097 0.4397 0.0012 0.1388
-0.1027 0.8791 0.9991 0.9885
t2 =
3.7340 0 0 0
0 0.5130 0 0
0 0 0.0045 0
0 0 0 0.1450
ans =
-173.47 (s-173.2) (s+9.249) (s+0.03573)
--------------------------------------------
(s-31.69) (s+0.03047) (s^2 + 2.464s + 47.46)
Continuous-time zero/pole/gain model.
Testing for system controllability:
System is controllable
-----------------------------------------------------------
System #2
Boeing 747 System Model #1:
EigenValues:
0.2259 0.2259 0.0172 0.0067
0.1544 0.1544 0.0118 0.0404
0.6670 0.6670 0.4895 0.0105
0.6930 0.6930 0.8717 0.9991
EigenVector:
0.9472 0 0 0
0 0.9472 0 0
0 0 0.5627 0
0 0 0 0.0073
0.1343 0.1530 0.0137 0.0070
t1 =
0.2333 -0.1195 0.0051 -0.0199
-0.9160 0.1402 0.0414 0.0563
-0.3097 0.4397 0.0012 0.1388
-0.1027 0.8791 0.9991 0.9885
t2 =
3.7340 0 0 0
0 0.5130 0 0
0 0 0.0045 0
0 0 0 0.1450
ans =
⊘ This is a preview!⊘
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide

3.7340
0.5130
0.0045
0.1450
L =
-157.6845
-43.0974
184.6285
24.0137
ans =
-10.0000
-9.0000
-5.6450
-0.0045
ans =
-25.062 (s-60) (s+6.644) (s+0.7724)
------------------------------------------
(s-30.85) (s-4.982) (s^2 + 6.435s + 14.96)
Continuous-time zero/pole/gain model.
Testing for system controllability:
System is controllable
0.5130
0.0045
0.1450
L =
-157.6845
-43.0974
184.6285
24.0137
ans =
-10.0000
-9.0000
-5.6450
-0.0045
ans =
-25.062 (s-60) (s+6.644) (s+0.7724)
------------------------------------------
(s-30.85) (s-4.982) (s^2 + 6.435s + 14.96)
Continuous-time zero/pole/gain model.
Testing for system controllability:
System is controllable
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

1 out of 5

Your All-in-One AI-Powered Toolkit for Academic Success.
+13062052269
info@desklib.com
Available 24*7 on WhatsApp / Email
Unlock your academic potential
© 2024 | Zucol Services PVT LTD | All rights reserved.