Unit 4 Maths: Calculus Techniques for Engineering Technicians - BTEC

Verified

Added on  2023/04/23

|8
|839
|159
Homework Assignment
AI Summary
This assignment focuses on applying calculus techniques to solve engineering problems. It covers differentiation of various functions, including polynomial, exponential, and trigonometric functions. Integration techniques are applied to solve problems involving summation, and graphical methods are used to analyze exponential growth and decay. The assignment also includes error analysis to compare graphical and analytical solutions. Specific tasks involve finding derivatives and integrals of given functions, determining gradients, calculating temperature changes, and finding mean voltage and charge. The student work provides detailed step-by-step solutions for each problem.
Document Page
Running head: CALCULUS TECHNIQUES 1
Calculus Techniques
Name
Institution
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
CALCULUS TECHNIQUES 2
Task 1-Part a
Question a
y=4 x39 x2 +3 x4
dy
dx =4 ( 3 ) x319 ( 2 ) x21 +3 ( 1 ) x110=12 x2 18 x +3
Question b
s=4 e3 t 2 e3 t
ds
dt =4 ( 3 ) e3 t2 ( 3 ) e3 t =12 e3 t 6 e3 t
Question c
y=4 cos ( 5 x ) 3 sin (2 x )
dy
dx =4 d
dx cos ( 5 x )3 d
dx sin (2 x )
In evaluating d
dx ( 4 cos ( 5 x ) ) ,let 5 x=u
cos ( 5 x )=cosu
du
dx =5 , d
du ( cosu )=sinu
d
dx (4 cos ( 5 x ) )=4 du
dx × d
du =4(5)sinu =20 sin (5 x )
In evaluating d
dx ¿let 2 x=m
Document Page
CALCULUS TECHNIQUES 3
sin ( 2 x ) =sin ( m )
dm
dx =2, d
dm ( sin ( m) )=cos ( m)
d
dx ¿
dy
dx =20 sin ( 5 x ) 6 cos (2 x )
Task 1-Part b
Question d
(8¿ x3 +5 x2 4 x )dx=8 x3 dx +5 x2 dx4 x dx ¿
¿ 8 x3 +1
3+1 +5 x2 +1
2+1 4 x1+1
1+1
¿ 8 x4
4 +5 x3
3 4 x2
2
¿ 2 x4 + 5
3 x3 2 x2 +C
Question e
(¿ e2 t3 e6 t ) d t =e2 t dt3e6 t dt ¿
In evaluating e2 t dt ,let 2 t=u , dt=1
2 du
e2 t dt= 1
2 eu du= 1
2 eu= 1
2 e2 t
Document Page
CALCULUS TECHNIQUES 4
In evaluating 3 e6 t dt ,let 6 t=u , dt= 1
6 du
3 e6 t dt=3 × 1
6 eu du= 1
2 eu= 1
2 e6 t
Therefore ,(¿ e2 t3 e6 t )d t= 1
2 e2 t 1
2 e6 t +C ¿
Task 2(a)
Part a
v=60 ( 1e0.2 t )
t 0 2 4 6 8 10 12 14
v 0 19.78 33.04 41.93 47.89 51.88 54,57 56.35
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
CALCULUS TECHNIQUES 5
Gradient at t=9 seconds =5642
125 = 14
7 =2 v s1
Part b
Gradient= d v
dt = d
dt ( 60 ( 1e0.2t ) )= d
dt (60 ) d
dt (60 e0.2 t )
¿ 060(0.2)(e0.2t )
¿ 060 (0.2 ) ( e0.2t ) =12 e0.2 t
Gradient ( t=9 seconds )=12 e0.2 (9 )=1.9836 v s1
Part c
Document Page
CALCULUS TECHNIQUES 6
% error= Graph value ActualValue
Actual Value × 100 %
¿ 21.9836
1.9836 × 100 %=0.8275 %
Task 2(b)
Part d
θ( temperature)=25+ 80 et
t 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
θ 10
5
73.52 54.43 42.85 35.8
3
31.57 29.9
8
27.42 26.4
7
25.89 25.53 25.3
3
25.2
Document Page
CALCULUS TECHNIQUES 7
Part e
I nitial temperature ( when t=0 )=105
Temperature ( as t )=25
Part f
Slope ( at t=3 seconds ) = 2035
5.21.4 =3.9474
Slope= d θ
dt ( 25+80 et )=0+80 (1 ) et =80 et
Slope ( t=3 ) =80 e ( 3 ) =3.9830
% error=3.9474(3.9830)
3.9830 =0.8938 %
The slopes using the two methods is similar but with a percentage error of 0.8938 %
Task 3
Part a
voltage , v=220 sin (140 πt)
mean voltage= total voltage
time =

t =0
3.6
220 sin (140 πt )
3.6 ms

t =0
3.6
220 sin ( 140 πt ) =220 ( 1
140 π ) cos ( 140 π t ) ¿t =0
t =3.6¿
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
CALCULUS TECHNIQUES 8
¿ 220
140 π ( cos ( 140 π ×3.6 )cos (140 π ×0 ) ) = 220
140 π ( 11 )=0
mean voltage= totalvoltage
time = 0
3.6 =0
Part b
Charge , I =
t =0
t =7
3 t2 dt =3
t=0
t=7
t2 dt
¿ 3 ( t2 +1
2+1 ) ¿t =0
t =7 ¿
3 ( t3
3 )¿t=0
t=7= ( t3 ) ¿t =0
t =7 =7303=343 Coulombs ¿ ¿
Charge=343 Coulombs
chevron_up_icon
1 out of 8
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]