Solution: Calculus, Laplace Transform, Complex Numbers, Ellipse

Verified

Added on  2022/09/07

|6
|330
|20
Homework Assignment
AI Summary
This document presents a comprehensive solution to a calculus assignment, addressing various concepts within the field. It includes detailed solutions for problems involving Laplace transforms, such as finding the Laplace transforms of given expressions and the inverse Laplace transform of a given function. The solution also covers complex numbers, including calculations of magnitude and argument, and determining the value of a complex expression. Furthermore, it includes an analysis of an ellipse, deriving its equation from given conditions. The assignment solution provides step-by-step explanations and calculations, making it a valuable resource for students studying calculus and related mathematical concepts. This resource is available on Desklib, a platform offering a wide range of study materials.
Document Page
Solutions
Solution-B1
(a) (i) By shifting property,
L (eatf ( t ) )=F (sa)
(ii) L (
0
t
[ f (u )e2 ucos ( 3 u ) ] du )
¿ L ¿
As L [ cos ( at ) ] =s /(s2+ a2) then by using shifting property and Laplace transform of
integrals, the Laplace transform is
¿ F ( s )
s ( s (2 ) )
s ( s (2 ) )2 + ( 3 )2 ¿ ¿= F ( s )
s ( s+ 2 )
s ( ( s +2 )2+ 9)
(b) For 0 t<2 , f ( t ) =4t2for t 2 , f ( t ) =0
So, f(t) can be written as
f ( t )= ( 4t2 ) ( u ( t )u ( t2 ) )
As u ( t )=1 for t 0u ( t2 )=1 for t 2

For 0 t<2 , u ( t ) u ( t2 )=10=1
For t 2 ,u ( t )u ( t2 ) =11=0
L ( ( 4t2 ) ( u ( t ) u ( t2 ) ) ) =L ( 4 u ( t ) )L ( 4 u ( t2 ) ) L ( t2 u ( t ) ) + L ( t2 u ( t2 ) )
Let t 1=t2 ,
so , t2 u ( t2 ) can be written as (t 1+2 )2 u ( t 1 )
L ( 4 u ( t ) ) L ( 4 u ( t2 ) ) L ( t 2u ( t ) ) + L ( (t 1+2)2 u ( t 1 ) )
¿ L ( 4 u ( t ) )L ( 4 u ( t2 ) )L ( t2u ( t ) )+ L ((t 12 +2 t 1+4 )u ( t 1 ) )
¿ 4
s 4
s e
2 s
2
s3 e2 s
( 2
s3 + 4
s2 + 4
s )
¿ 4
s (12 e2 s ) + 4
s2 e2 s 2
s3 (1+e2 s )
(c ) L1 ¿
Decomposing the given rational expression into partial fractions,
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
2 s +3
( s¿¿ 2+ 4)(s¿¿ 2+9)= As+ B
s2 +4 + Cs+ D
s2 +9 ¿ ¿
Equating coeff of s3, s2 , sconstant terms
A+C = 0
B+D = 0
9A+4C = 2
9B+4D = 3
Solving for A, B, C and D, we get A = 2/5, B = 3/5, C=-2/5, D=-3/5
= L1
( 1
5 (2 s+3
s2+4 2 s +3
s2 +9 ) )
= L1
( 2
5 ( s
s2+4 )+ 3
5 ( 1
s2 +4 ) 2
5 ( s
s2+ 9 )3
5 ( 1
s2 +9 ) )
Since L1
( s
s2 +a2 )=cos (at) and L1
( a
s2 +a2 ) =sin ( at), so, the L1 of the expressionis
¿ 1
5 [2 cos (2 t)+ 3
2 sin (2 t)2cos (3 t)sin ( 3 t ) ] Ans.
(d )¿ z1¿ 2 , arg(z1 ¿=π
3 =¿ z1=2¿
z2 = e /3 => ¿ z2¿ 1
z3=2+2 3i
z1+ p¿ z2 ¿
z3
=
2 ( 1
2 +i ( 3
2 ) ) + p
2(1+ 3 i) ¿
¿ [ ( 1 3 i )+ p ]
2(1+ 3 i) *(1 3 i)
(1 3 i)
¿ (13+ p2 3i p 3 i)
8
For the expression to be purely imaginary, real part should be zero i.e.
1-3+p = 0 => p = 2
Ans. p = 2
(e) xyez + y z3ln ( x +z )=7
Document Page
Differentiating the eqn. wrt y gives,
x(y ez z
y +ez ¿+(3y z2 z
y + z3 ¿ 1
( x+ z )
z
y =0
z
y = x ez + z3
xy ez +3 y z2 1
( x + z )
Solution- B2
(a) z=f ( u )
z
x =f ' ( u )u
x =f ' ( u )2 x y3
2 z
x2 =
x ( f ' ( u )2 x y3 )=2 y3
[ xf ' ' (u ) u
x + f ' ( u ) ]
¿ 2 y3 [ xf ' ' ( u )2 x y3 +f ' ( u ) ]
z
y =f ' ( u ) u
y =f ' ( u )3 x2 y2
2 z
y2 =
y ( f ' ( u )3 x2 y2 )=3 x2
[ y2f ' ' ( u ) u
y +f ' ( u )2 y ]
¿ 3 x2 [ y2f ' ' ( u )3 x2 y2+ f ' ( u ) .2 y ]
¿ 9 x4 y4f ' ' ( u ) + 6 x2 y . f ' (u)
2 z
x y =
x ( z
y )=
x [ f ' ( u )3 x2 y2 ]
¿ 3 y2 [f ' ( u )2 x+x2f ' ' ( u )u
x ]
¿ 3 y2 [ f ' (u )2 x+ 2 x3 y3f '' (u ) ]
¿ 6 x y2f ' ( u ) +6 x3 y5f ' ' ( u )
Therefore,
6 y2 2 z
x2 y2 2 z
y2 ¿ xy 2 z
x y
¿ 6 y2 [2 y3 [ xf ' ' ( u )2 x y3 + f ' ( u ) ] ] y2 [9 x4 y4f ' ' ( u ) +6 x2 y . f ' (u)]¿
xy [6 x y2f ' ( u ) +6 x3 y5f ' ' ( u ) ]
¿ 9 x4 y6f ' ' ( u ) Ans
Document Page
(b) F(x,y,z) = x2 y z3+ln (xz )
Max rate of change of a function at point (a, b, c) is the magnitude of the gradient at
the point i.e.
| f ¿ (f ¿ ¿ x ( a , b , c))2 +¿ (f ¿¿ y ( a , b , c))2+(f ¿¿ z(a , b , c))2 ¿ ¿ ¿ ¿
¿ (2 xy z3 +1/ x)2 +¿ x4 z6+(3 x2 y z2 +1/ z )2 ¿
At ( 1, 1 , 2 )
| f ¿ ( 17 )2+ ¿ 164+ ( 12.5 )2 = 509.25=22.5666 ¿ Ans
(c ) f ( x , y , z ) =4 xz +7 yz+ xy
xyz=756 -----------(1)
F ( x , y , z , λ )=f ( x , y , z ) λ ( g ( x . y . z )K )
¿ 4 xz+7 yz+ xy λ(xyz 756)
Fx=4 z+ yλyz=0
F y=7 z + xλxz=0
Fz =4 x +7 y λxy=0
Fλ=xyz +756=0
λ= 4
y + 1
z
λ= 7
x + 1
z
λ= 4
y + 7
x
Solving for x, y, z , we get
x=7 z , y =4 z
Putting these values in (1)
( 7 z ) ( 4 z ) ( z ) =756
z=3
So, x=21 , y=12 , z =3
Therefore, f min=4213+7123+2112=756 Ans
Solution-A4
(a) |z|+|z i|=2
z=x +iy
x2+ y2 + x2+( y1)2 = 2
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
¿ , x2 + y2=2 x2 +( y1)2
Squaring both sides, we get
x2+ y2=4 + x2+( y1)222 x2+( y1)2
2 y5=4 x2 +( y 1)2
4 y2 +2520 y =16 x2 +16 y232 y +16
Or, 16 x2+12( y ¿¿ 2 y )9=0 ¿
Comparing with standard eqn.
a x2+2hxy + b y2+2 gx+ 2 fy +c=0
we have, a = 16, 2h = 0, b = 12, 2g = 0, 2f = -12 => f= -6, c= -9
= abc +2 fgha f 2b g2c h2= ( 16129 )16144 0
2h*2h – 4ab = 0 - 4(16*12) < 0 and a c
Therefore, locus of z is the equation of an ellipse.
Solving further, the equation of the ellipse comes out as
x2
¿ ¿ ¿
(b) w= ( S+1 ) e=u+iv
z=x +iy
z +i w=0
xiy+i(uiv)=0
x +v =0=¿ x=v
y=u=¿ y =u
z=x +iy=v +iu=i ( u+iv ) =iw=( S+1)e e/ 2 as i=¿ e /2
arg ( zw )=θ+θ+ π
2 =2 π
3
As π θ< π,
Document Page
θ=
2 π
3 π
2
2 = π
12 , (π + π
12 )=¿ θ= π
12 ,11 π
12
Ans
chevron_up_icon
1 out of 6
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]