MAT2100 Assignment 2, University Calculus: Comprehensive Solutions
VerifiedAdded on 2020/04/07
|29
|618
|231
Homework Assignment
AI Summary
This document presents a comprehensive solution set for Assignment 2 in a Calculus course, likely MAT2100, at a university. The solutions cover a range of calculus topics, beginning with basic problem-solving and progressing to more complex concepts. Specific problems addressed include Fourier ...
Read More
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.

Assignment 2, MAT2100
Name of the Student
Name of the University
Author Note
Name of the Student
Name of the University
Author Note
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.

Table of Contents
Answer to question 1:.................................................................................................................................3
Answer to question 2:.................................................................................................................................6
Answer to question 3:.................................................................................................................................7
Answer to question 4:...............................................................................................................................10
Answer to question 5:...............................................................................................................................16
Answer to question 6:...............................................................................................................................16
Answer to question 7:...............................................................................................................................18
Answer to question 8:...............................................................................................................................18
Answer to question 9:...............................................................................................................................24
Answer to question 10:.............................................................................................................................27
Answer to question 1:.................................................................................................................................3
Answer to question 2:.................................................................................................................................6
Answer to question 3:.................................................................................................................................7
Answer to question 4:...............................................................................................................................10
Answer to question 5:...............................................................................................................................16
Answer to question 6:...............................................................................................................................16
Answer to question 7:...............................................................................................................................18
Answer to question 8:...............................................................................................................................18
Answer to question 9:...............................................................................................................................24
Answer to question 10:.............................................................................................................................27

Answer to question 1:

Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.


Answer to question 2:
Simplifying
Simplifying

[b]
Answer to question 3:
[a]
Answer to question 3:
[a]
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

[b]

[c]

Answer to question 4:
[a]
[b]
The function is defined as
[i] not defined in the period of (-10, -2];
[ii] –t^2 in the period of (-2,0]
[iii] t^2 in the period of [0,2)
[iv] not defined in the period of [2, -10)
[c]
The function is an even function.
[a]
[b]
The function is defined as
[i] not defined in the period of (-10, -2];
[ii] –t^2 in the period of (-2,0]
[iii] t^2 in the period of [0,2)
[iv] not defined in the period of [2, -10)
[c]
The function is an even function.
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.

[d]
Average value of the function on its period
= 1
0+2 ∫
−2
0
−t2 dt + 1
2−0 ∫
0
2
t2 dt
= −1
2 [ t3
3 ]−2
0
+ 1
2 [ t3
3 ]0
2
=-4/3 + 4/3
=0
[e]
The Fourier Series representation is
xT (t )=a 0+∑
n=1
∞
(an cos ( nπ t
2 )+bn sin( nπ t
2 ))
Since, the function is even,
xT (t )=a 0+∑
n=1
∞
¿ ¿
= ∑
n=0
∞
¿ ¿
The average value is 0
And the value of an is 1
2 ¿
= 1
2 ¿
Now,
Average value of the function on its period
= 1
0+2 ∫
−2
0
−t2 dt + 1
2−0 ∫
0
2
t2 dt
= −1
2 [ t3
3 ]−2
0
+ 1
2 [ t3
3 ]0
2
=-4/3 + 4/3
=0
[e]
The Fourier Series representation is
xT (t )=a 0+∑
n=1
∞
(an cos ( nπ t
2 )+bn sin( nπ t
2 ))
Since, the function is even,
xT (t )=a 0+∑
n=1
∞
¿ ¿
= ∑
n=0
∞
¿ ¿
The average value is 0
And the value of an is 1
2 ¿
= 1
2 ¿
Now,


Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

Also,

Thus,
We have an = ½(-8πcos(πn)/π^3n^3)
=-4 πcos(πn)/(π^3n^3)
So,
The Fourier series will be = ∑
n=0
∞
(−4 π cos ( π n )
π3 n3 cos ( nπ t
2 ))
Now,
First term = −4 cos ( π )
π2 cos ( π t
2 )
Second term = −cos ( 2 π )
2 π2 cos ( πt )
Third term = −4 cos ( π )
27 π2 cos ( 3 π t
2 )
We have an = ½(-8πcos(πn)/π^3n^3)
=-4 πcos(πn)/(π^3n^3)
So,
The Fourier series will be = ∑
n=0
∞
(−4 π cos ( π n )
π3 n3 cos ( nπ t
2 ))
Now,
First term = −4 cos ( π )
π2 cos ( π t
2 )
Second term = −cos ( 2 π )
2 π2 cos ( πt )
Third term = −4 cos ( π )
27 π2 cos ( 3 π t
2 )

Answer to question 5:
The total differential at the point (0, 0) is dw = wx(0, 0) dx + wy(0, 0) dy
In the first case, wx = (2 cos x – sin x) exp (2x + 3y)
and
Wy = 2 exp (2x + 3y) cos x
Hence, at (0, 0), wx =(2*1 -0)exp(0) = 2
And Wy = 2exp(0)*1 = 2
Hence, dw = 2(dx +dy)
In the second case, wx = (2 cos x – sin x) exp (2x + 3y)
and
Wy = 3 exp (2x + 3y) cos x
Hence, at (0, 0), wx =(2*1 -0)exp(0) = 2
And Wy = 3exp(0)*1 = 3
Hence, dw = 2dx +3dy
Therefore, as case one fulfils U(0, 0) = 2; it can be said that first one is the total differential equation.
The total differential at the point (0, 0) is dw = wx(0, 0) dx + wy(0, 0) dy
In the first case, wx = (2 cos x – sin x) exp (2x + 3y)
and
Wy = 2 exp (2x + 3y) cos x
Hence, at (0, 0), wx =(2*1 -0)exp(0) = 2
And Wy = 2exp(0)*1 = 2
Hence, dw = 2(dx +dy)
In the second case, wx = (2 cos x – sin x) exp (2x + 3y)
and
Wy = 3 exp (2x + 3y) cos x
Hence, at (0, 0), wx =(2*1 -0)exp(0) = 2
And Wy = 3exp(0)*1 = 3
Hence, dw = 2dx +3dy
Therefore, as case one fulfils U(0, 0) = 2; it can be said that first one is the total differential equation.
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.

Answer to question 6:


=5.79
Answer to question 7:
Given
z (x, y) = 6 tan^(-1)(y/x)
Bounded by x^2 + y^2 = 1
Bounded by x^2 + y^2 = 9
Bounded by y=x/sqrt(3)
And Bounded by y=sqrt(3)x
Plotting all the boundaries, we have
X varies from 0 to 1 and y varies from 1/sqrt(3) to sqrt(3).
Answer to question 7:
Given
z (x, y) = 6 tan^(-1)(y/x)
Bounded by x^2 + y^2 = 1
Bounded by x^2 + y^2 = 9
Bounded by y=x/sqrt(3)
And Bounded by y=sqrt(3)x
Plotting all the boundaries, we have
X varies from 0 to 1 and y varies from 1/sqrt(3) to sqrt(3).
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

Therefore,


Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.


Answer to question 8:
Work done = ∫ F∗dr
= ∫
0
1
F∗dr
dt dt
= ∫
0
1
[ ( 5 x−8 y √ x2 + y2 ) i+ ( 4 x +10 y √ x2 + y2 ) j+ zk ] . d
dt ¿ ¿
=∫
0
1
[ (5 x−8 y √x2 + y2 ) i+ ( 4 x +10 y √x2 + y2 ) j+ zk ] . ¿ ¿
=∫
0
1
¿ ¿
Work done = ∫ F∗dr
= ∫
0
1
F∗dr
dt dt
= ∫
0
1
[ ( 5 x−8 y √ x2 + y2 ) i+ ( 4 x +10 y √ x2 + y2 ) j+ zk ] . d
dt ¿ ¿
=∫
0
1
[ (5 x−8 y √x2 + y2 ) i+ ( 4 x +10 y √x2 + y2 ) j+ zk ] . ¿ ¿
=∫
0
1
¿ ¿

=∫
0
1
¿ ¿
=∫
0
1
¿ ¿
0
1
¿ ¿
=∫
0
1
¿ ¿
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser


=2.2632 [approx.]
Answer to question 9:
Total mass, M = ∫
3 /2
2
ρ( x ( t ) , y ( t ) , z ( t )) √ ( x' ( t ) )2
+ ( y' ( t ) )2
+ ( z' ( t ) )2
dt
=∫
3 /2
2
24 / √16 cos2 t +16 sin2 t−16 ( t−1 )2 √16 sin2 t+16 cos2 t +9dt
=∫
3
2
2
( 24
4 ( t−1 ) +5 ) dt
=∫
3
2
2
( 6
t−1 +5 ) dt
Answer to question 9:
Total mass, M = ∫
3 /2
2
ρ( x ( t ) , y ( t ) , z ( t )) √ ( x' ( t ) )2
+ ( y' ( t ) )2
+ ( z' ( t ) )2
dt
=∫
3 /2
2
24 / √16 cos2 t +16 sin2 t−16 ( t−1 )2 √16 sin2 t+16 cos2 t +9dt
=∫
3
2
2
( 24
4 ( t−1 ) +5 ) dt
=∫
3
2
2
( 6
t−1 +5 ) dt

=6.659 approx.
Answer to question 10:
Answer to question 10:
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.

Since, curl F(1,2,3) = 0
It is a solenoidal vector field.
It is a solenoidal vector field.
1 out of 29
Related Documents

Your All-in-One AI-Powered Toolkit for Academic Success.
+13062052269
info@desklib.com
Available 24*7 on WhatsApp / Email
Unlock your academic potential
© 2024 | Zucol Services PVT LTD | All rights reserved.