Calculus Assignment: Solving Differential Equations and Analysis
VerifiedAdded on 2022/09/07
|4
|648
|22
Homework Assignment
AI Summary
This assignment presents solutions to problems in calculus, specifically focusing on differential equations and numerical methods. The solution begins by solving second-order differential equations with constant coefficients, exploring cases with complex roots and oscillatory solutions. It then appli...
Read More
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.

QUESTION 5
Q5A) substitute D operator for dy
dx ,: (aD2+bD+C)x=0
Substituting m for D: am2+ bm+C=0
m= −b ± √ b2−4 ac
2a but r = -b/2a and ω= √4 ac−b2
2 a hence, jω = √b2−4 ac
2 a ,since b2 ≠ 4ac
hence, m= r±jω, ( complex roots). Therefore x(t) = ert(C1cos ωt+ C2sin ωt).
Q5B) (aD2+K)x=0
Substituting C for D: mC2+K=0; C= ± √−k
m , Let C= ±jω (since the C is complex)
Therefore, x(t)= e0(Acos ωt + Bsin ωt); Hence x(t) = Acos ωt + Bsin ωt
Q5C) x(t) = 0Acos ωt + Bsin ωt
Assume the initial conditions: y(0) =4, dx
dt = 9,
At x(0) =4, 4=Acos 0 + Bsin 0 i.e. A=4……….(i)
dx
dx = -ωAsinωt+ Bcos ωt; 9= 0 + Bcos 0; B=9…...(ii)
Hence x(t)= 4cos ωt + 9 sin ωt
Let m=N7+1=3+1=4, and k= N8+1=9+1=10,
Hence, (4D2+10)X= 0;
Replacing D with C; 4C2+10=0; C= ± √ −10
4 = ± j 1.58
X(t)= 4cos 1.58t +9sin 1.58t
Table 1: X(t)=4cos 1.58t + 9sin 1.58t
t in
seconds(s)
0 1.0 2.0 3.0 4.0 5.0 6.0
X in
metres
(m)
4 8.96 -4.17 -8.89 4.33 8.81 -4.49
Q5A) substitute D operator for dy
dx ,: (aD2+bD+C)x=0
Substituting m for D: am2+ bm+C=0
m= −b ± √ b2−4 ac
2a but r = -b/2a and ω= √4 ac−b2
2 a hence, jω = √b2−4 ac
2 a ,since b2 ≠ 4ac
hence, m= r±jω, ( complex roots). Therefore x(t) = ert(C1cos ωt+ C2sin ωt).
Q5B) (aD2+K)x=0
Substituting C for D: mC2+K=0; C= ± √−k
m , Let C= ±jω (since the C is complex)
Therefore, x(t)= e0(Acos ωt + Bsin ωt); Hence x(t) = Acos ωt + Bsin ωt
Q5C) x(t) = 0Acos ωt + Bsin ωt
Assume the initial conditions: y(0) =4, dx
dt = 9,
At x(0) =4, 4=Acos 0 + Bsin 0 i.e. A=4……….(i)
dx
dx = -ωAsinωt+ Bcos ωt; 9= 0 + Bcos 0; B=9…...(ii)
Hence x(t)= 4cos ωt + 9 sin ωt
Let m=N7+1=3+1=4, and k= N8+1=9+1=10,
Hence, (4D2+10)X= 0;
Replacing D with C; 4C2+10=0; C= ± √ −10
4 = ± j 1.58
X(t)= 4cos 1.58t +9sin 1.58t
Table 1: X(t)=4cos 1.58t + 9sin 1.58t
t in
seconds(s)
0 1.0 2.0 3.0 4.0 5.0 6.0
X in
metres
(m)
4 8.96 -4.17 -8.89 4.33 8.81 -4.49
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.

0 1 2 3 4 5 6 7
-10
-8
-6
-4
-2
0
2
4
6
8
10
x
Figure1: plot for x(t)=4cos1.5t +9sin1.5t
Q5D) The product of acceleration and mass is the force producing the acceleration. If all other factors
are kept constant, mass is inversely proportional to time.
Q5 E) (mD2+qD+k)x=0
Replace D with C; mC2+qC+K=0
C= q ± √q 2−4 mk
2 m , where q2 -4mk< 0
Let r = −q
2m , and √q 2−4 mk
2 m = jω; so, C= r+j ω
x(t)= ert(Acos ωt + Bsin ωt), A and B are constants.
Q5F) dx
dt = ertsin ωt (ωA+Br)+ = ertcos ωt(ωB+Ar)
9=Ar+ωB……(1)
4= e0(Acos0+Bsin 0); A=4
Since q= √4 mk-1, k=10 and m=4;
9=−6 √36+B √−1
8 ; B= -108; X(t)=4cos7.12t-108sin7.12t
Table2: X(t)=4cos7.12t-108sin7.12t
T(seconds) 0.5 1.0 1.5 2.0 2.5 3.0
X (metres) 40.48 -77.51 101.43 -107.84 195.65 104.15
-10
-8
-6
-4
-2
0
2
4
6
8
10
x
Figure1: plot for x(t)=4cos1.5t +9sin1.5t
Q5D) The product of acceleration and mass is the force producing the acceleration. If all other factors
are kept constant, mass is inversely proportional to time.
Q5 E) (mD2+qD+k)x=0
Replace D with C; mC2+qC+K=0
C= q ± √q 2−4 mk
2 m , where q2 -4mk< 0
Let r = −q
2m , and √q 2−4 mk
2 m = jω; so, C= r+j ω
x(t)= ert(Acos ωt + Bsin ωt), A and B are constants.
Q5F) dx
dt = ertsin ωt (ωA+Br)+ = ertcos ωt(ωB+Ar)
9=Ar+ωB……(1)
4= e0(Acos0+Bsin 0); A=4
Since q= √4 mk-1, k=10 and m=4;
9=−6 √36+B √−1
8 ; B= -108; X(t)=4cos7.12t-108sin7.12t
Table2: X(t)=4cos7.12t-108sin7.12t
T(seconds) 0.5 1.0 1.5 2.0 2.5 3.0
X (metres) 40.48 -77.51 101.43 -107.84 195.65 104.15

0 1 2 3 4 5 6 7
-15
-10
-5
0
5
10
15
x
Figure 2: graph for X(t)=4cos7.12t-108sin7.12t
Q5G) When there was no friction, the energy on the spring was underdamped. However, when
there is friction, the energy is apparently critically damped
QUESTIONFOUR
Q4a) Y1=y0 +h(y0’); (y’)0 = 1+2= -1, h= 0.16
Y1= 1+0.16(-1) = 0.84
y2’= 0.84+ 0.16 (-1) = 0.68 the rest of y values are thus determined as shown on table 3 below
and its slope is as in figure 3 below
Table3: dy/dt= y+t
X -
2
-
1.
8
4
-
1.
6
8
-
1.
5
2
-
1.
2
-
1.
3
6
-
1.
0
4
-
0.
8
8
-
0.
7
2
-
0.
5
6
-
0.
4
-
0.
2
4
-
0.
0
8
0.
0
8
0.
2
4
0.
4
0.
5
6
0.
7
2
0.
8
8
1.
0
4
1.
2
1.
3
6
1.5
2
1.
6
8
1.
8
4
Y 0
.
8
4
0.
6
8
0.
5
2
0.
3
6
0.
0
4
0.
2
-
0.
1
2
-
0.
2
8
-
0.
4
4
-
0.
6
-
0.
7
6
-
0.
9
2
-
1.
0
8
-
1.
2
4
-
1.
4
-
1.
5
6
-
1.
7
2
-
1.
8
8
-
2.
0
4
-
2.
2
-
2.
3
6
-
2.
5
2
-
2.6
8
-
2.
8
4
-3
-15
-10
-5
0
5
10
15
x
Figure 2: graph for X(t)=4cos7.12t-108sin7.12t
Q5G) When there was no friction, the energy on the spring was underdamped. However, when
there is friction, the energy is apparently critically damped
QUESTIONFOUR
Q4a) Y1=y0 +h(y0’); (y’)0 = 1+2= -1, h= 0.16
Y1= 1+0.16(-1) = 0.84
y2’= 0.84+ 0.16 (-1) = 0.68 the rest of y values are thus determined as shown on table 3 below
and its slope is as in figure 3 below
Table3: dy/dt= y+t
X -
2
-
1.
8
4
-
1.
6
8
-
1.
5
2
-
1.
2
-
1.
3
6
-
1.
0
4
-
0.
8
8
-
0.
7
2
-
0.
5
6
-
0.
4
-
0.
2
4
-
0.
0
8
0.
0
8
0.
2
4
0.
4
0.
5
6
0.
7
2
0.
8
8
1.
0
4
1.
2
1.
3
6
1.5
2
1.
6
8
1.
8
4
Y 0
.
8
4
0.
6
8
0.
5
2
0.
3
6
0.
0
4
0.
2
-
0.
1
2
-
0.
2
8
-
0.
4
4
-
0.
6
-
0.
7
6
-
0.
9
2
-
1.
0
8
-
1.
2
4
-
1.
4
-
1.
5
6
-
1.
7
2
-
1.
8
8
-
2.
0
4
-
2.
2
-
2.
3
6
-
2.
5
2
-
2.6
8
-
2.
8
4
-3

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-3.5
-3
-2.5
-2
-1.5
-1
-0.5
0
0.5
1
1.5
Y
Figure3: slope of dy/dt= y+t
Q4B) y(0.2) =-1.4
Q4C) y0’=1+0= 1, y0.1=1+(1⨯0.1)= 1.1.
y1’=1.1+0.2= 1.32; y0.2= 1.1+0.1(1.32) = 1.232
Q4D) mt,y(t))=f(0+0.1/2, i+0.1/2 (1)); m= (0.5,1.05)
Y(0+0.1)= 1+1.05
Y(0+0.1)= 2.05
Y(0.1+0.1)= 2.05+1= 3.0
-3.5
-3
-2.5
-2
-1.5
-1
-0.5
0
0.5
1
1.5
Y
Figure3: slope of dy/dt= y+t
Q4B) y(0.2) =-1.4
Q4C) y0’=1+0= 1, y0.1=1+(1⨯0.1)= 1.1.
y1’=1.1+0.2= 1.32; y0.2= 1.1+0.1(1.32) = 1.232
Q4D) mt,y(t))=f(0+0.1/2, i+0.1/2 (1)); m= (0.5,1.05)
Y(0+0.1)= 1+1.05
Y(0+0.1)= 2.05
Y(0.1+0.1)= 2.05+1= 3.0
1 out of 4

Your All-in-One AI-Powered Toolkit for Academic Success.
+13062052269
info@desklib.com
Available 24*7 on WhatsApp / Email
Unlock your academic potential
© 2024 | Zucol Services PVT LTD | All rights reserved.