Calculus Assignment: Solving Problems in Differentiation & Integration

Verified

Added on  2023/06/12

|7
|2556
|306
Homework Assignment
AI Summary
This calculus assignment provides detailed solutions to a range of problems covering differentiation and integration techniques. It includes finding derivatives of various functions using rules like the quotient rule, product rule, and chain rule. The assignment also addresses applications of calculus, such as finding turning points of curves, determining maximum and minimum values, and solving optimization problems. Additionally, it covers integration, including indefinite and definite integrals, with examples involving trigonometric functions and partial fractions. The problems are solved step-by-step, offering a comprehensive guide for students studying calculus. Desklib offers a wealth of similar solved assignments and past papers to aid students in their studies.
Document Page
CALCULUS
Author
Department
Institution
City, Country
Address
Question 1
a.
7 x2+ 2
x3 +5 3
x1
dy
dx ()=7 d
dx ( x2 )+2 d
dx (x ¿¿3)+5 d
dx (x
1
3 )0 ¿
¿ 7 ( 2 ) ( x21 ) +2(3)( x¿¿31)+5 ( 1
3 ) x
1
3 1
¿
¿ 14 x6 x 4+ 5
3 x
2
3
b. y=In ( 3 x2 )
Let 3 x2=u , so that y=lnu
dy
du = 1
u , du
dx =3
dy
dx = dy
du × du
dx = 1
u × 3= 3
u = 3
3 x2
c. y=5 sin 3 x
dy
dx = d
dx ¿
Let 3 x=u , so that y=sinu
dy
du =cosu , du
dx =3
dy
dx =5 dy
du × du
dx =5 ( cosu ) (3 )=15 cosu=15 cos (3 x)
d.
y= 3 e2 x
x3
We apply the quotient rule to obtain
dy
dx =
x3 d
dx ( 3 e2 x ) 3 e2 x d
dx (x3 )
(x3 )2
¿ x3 (6 e¿¿ 2 x)3 e2 x(3 x2)
x6 ¿
¿ 6 x3 e2 x9 x2 e2 x
x6 = 6 x e2 x9 e2 x
x4
e. y=x3 cos 4 x
We apply the product rule to obtain
dy
dx =x3 d
dx ( cos 4 x )+ cos 4 x d
dx ( x ¿¿ 3)¿
¿ x3 ( 4 sin 4 x ) + cos 4 x (3 x ¿¿ 2) ¿
¿4 x3 sin (4 x )+3 x2 cos (4 x )
¿ 3 x2 cos ( 4 x)4 x3 sin ( 4 x)
f.
y= ( x27 ) 6
Let x27=u , so that du
dx =2 x , y=u6
dy
du = d
du (u¿¿ 6)=6u5 ¿
dy
dx = dy
du × du
dx =6u5 × 2 x=12 x u5=12 x ( x27)5
Question 2
Part a
y=x3 e2 x
at x = 2
We apply the product rule as follows
dy
dx =x3 d
dx (e2 x )+e2 x d
dx ( x3 )
¿ x3 ( 2 e2 x ) +e2 x ( 3 x2 )
dy
dx =2 x3 e2 x+3 x2 e2 x
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
When x=2
dy
dx =2(2)3 e2(2)+3 ( 2 )2 e2 (2 )=16 e4 +12 e4=e4 ( 16+12 )=28 e4=1528.75
Part b
y=sin 3 x
x2 at x= π
4
We apply the quotient rule to obtain
dy
dx =
x2 d
dx ( sin ( 3 x ) ) sin ( 3 x ) d
dx (x2)
(x2)2
¿ x2 ( 3 cos ( 3 x ) )sin ( 3 x ) (2 x )
x4
¿ 3 x cos ( 3 x ) 2 sin(3 x)
x3
When x= π
4
dy
dx =
3 π
4 cos (3 π
4 )2sin ( 3 π
4 )
( π
4 )
3
¿
3 π
4 ( 2
2 ) 2 ( 2
2 )
π
64
3 =
64 ( 3 π 2
8 2)
π3
¿ 8 2 ( 3 π +8 )
π3 =6.358
Question 3
y=2 x39 x2+ 12 x +1
To get the turning points, we determine the derivative of the
curve and then equate it to zero as follows:
dy
dx =0= d
dx ( 2 x39 x2 +12 x +1 )
d
dx ( 2 x3 9 x2+12 x+ 1 )=6 x218 x+ 12=0
a=6 , b=18 , c=12
x= 18 ± (18)2 4 (6 ×12)
2× 6 =18 ± 324288
12 = 18 ± 6
12 = 24
12
x= 24
12 =2x=12
12 =1
x=1x =2
when x=1 , y=2(1)39 ( 1 )2+ 12 ( 1 ) +1=6
when x=2 , y=2(2)39 ( 2 ) 2 +12 ( 2 ) +1=5
Hence, the turning points are ( 1 , 6 )(2 ,5)
To determine whether the points are maximum, we choose
values on either sides of the turning points and evaluate the
derivatives as summarized in table 1 below.
dy
dx =6 x218 x+12
When x=0 x=1when x=1.5 x=2 when x=3
dy
dx
12( positive)0 1.5( negative)0 12( positive)
Sig
n ¿ ¿ ¿ ¿ ¿
Therefore, we can see that ( 1 , 6 )is a maximum point whereas
(2 , 5) is a minimum point.
Question 4
x=2 t315 t2+24 t +4
Part a
The velocity , v= dx
dt = d
dt (2 t3 15 t2 +24 t +4)
¿ 6 t230 t+24
When t=5 , v =6(5)230 ( 5 ) +24=24 m/ s
Part b
Document Page
acceleration= dv
dt = d
dt ( 6 t230 t +24)
¿ 12 t 30
When t=1 , acceleration=12 ( 1 ) 30=18 m/s2
Part c
At rest , velocity=0. That is,
6 t230 t+24=0 , a=6 , b=30 , c=24
t= 30 ± (30)24 (6 ×24)
2 ×12 = 30 ± 900576
24 = 30 ±18
24 = 48
24 12
24
t=2 sect=0.5 sec
Part d
From part b, acceleration=12t 30
When acceleration=6 m/s2 we can get the time as follows
12 t30=6
12 t=6+30=36
12t
12 =36
12 =3 ,t=3 sec
Question 5
E=1.16(5.232× 103 )T (7 ×106) T2
To get the maximum E, we equate the derivative of the
function to zero as follows
dE
dt =0=05.232× 1032 ¿
2 ¿
T =5.232× 103
2 ¿¿
Maximum
E=1.16(5.232× 103 )(373.7143)(7× 106 )(373.7143)2
Emax=1.16+1.955270.97764=2.13763
Question 8
volume of cylinder=π r2 h=1000, h=1000
π r2
S . A of cylinder=2 π r 2+2 πrh=2 π r 2+2 πr ( 1000
π r2 )
S . A=2 π r 2+ 2000
r
To minimize area, d ( S . A )=0. That is,
d
dr ( 2 π r2 + 2000
r )=0
4 πr 2000
r2 =0
( 4 πr 2000
r2 ) r2=0 (r2)
4 π r3 2000=0
4 π r3 =2000
r3 =2000
4 π = 500
π
radius=3
500
π =5.42 cm
We get the corresponding height as
h=1000
π r2 =h= 1000
π (5.42)2 =10.84 cm
Question 9
a. 5 e2 x + 3
x4 dx
5 e2 x + 3
x4
dx=5e2 x dx + x
4
3 dx
¿ 5 ( 1
2 e
2 x
)+ x
4
3 +1
4
3 +1
+C
¿ 5
2 e2 x + x
7
3
7
3
+C
Document Page
¿ 5
2 e2 x + 3
7 x
7
3 + C
b. 3
4 x dx
3
4 x dx= 3
4 1
x dx= 3
4 ln ( x )+C
c. 4 x dx
4 x dx=4 x
1
2 dx=4 × x
1
2 +1
1
2 +1
+C
¿ 4 × x
3
2
3
2
+C=8
3 x
3
2 +C
d.
0
π
cos x+sin 2 x dx

0
π
cos x+sin 2 x dx=
0
π
cos xdx +
0
π
sin 2 x dx
¿|sin ( x)|0
π
+|1
2 cos ( 2 x)|0
π
¿ ( 00 ) 1
2 ( cos ( 2 π ) cos ( 0 ) )
¿1
2 ( 11 )=0
e. 2 x ln x dx
2 x ln x dx=2 x ln x dx
We apply the Chain rule :udv=uv vdu as follows
We let x=u so that du=dx, and let
lnx=dv so that v =lnxdx=1/ x
uv vdu=x ( 1
x ) ( 1
x )dx
¿ 1ln ( x ) +C
Question 10
a.
0
1
( 5 x6 ) 5 dx
Let 5 x6=u , dx= 1
5 du

0
1
( 5 x6 )5 dx =
0
1
1
5 u
5
du
1
5 u
5
= 1
5 ( 1
6 u
6
)= 1
30 u
6
= 1
30 (5 x6)6

0
1
( 5 x6 )5 dx =| 1
30 ( 5 x6 )6
|0
1
¿ 1
30 ((5(1)6)¿¿ 6( 5(0)6)6 ) ¿
¿ 1
30 ((1)¿¿ 6(6)6 )¿
¿ 1
30 ( 146656 )=1555.167
b.
0
π
4
x sinx dx
We apply the Chain rule :udv=uv vdu as follows
We let x=u so that du=dx, and let
sinx=dv so that v= sinxdx=cosx
uv vdu=x ( cosx ) ( cosx ) dx
¿xcosx+sinx
uv vdu=sinxxcosx

0
π
4
x sinx dx=|sinxxcosx|0
π
4
¿ ¿
¿ 1
2 (1 π
4 )=0.15175
c.
0
1
124 x
x2+2 x3 dx
First, we evaluate the function into partial fraction as follows
124 x
x2 +2 x3 = 124 x
x2+3 xx3 = 124 x
x (+3)1( x +3)= 124 x
( x1)(x+ 3)
124 x
( x1)(x +3)= A
(x1) + B
(x +3)
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
124 x= A ( x +3 ) + B(x1)
When x=1
124(1)= A ( 1+3 ) + B( 11)
8=4 A , A=2
When x=3
124(3)= A (3+3 ) + B(31)
24=4 B , B=6
124 x
(x1)( x+3)= A
(x1) + B
(x+3)= 2
( x1)+ 6
( x+3)
Then we find the integral and evaluate the limits as follows

0
1
124 x
x2+2 x3 dx=
0
1
2
(x1) dx +
0
1
6
( x +3) dx
¿ 2
0
1
1
( x1) dx6
0
1
1
(x +3) dx
¿ 2 |ln ( x1)|0
1
6|ln (x +3)|0
1
¿ 2 { ln 0ln ( 1 ) }6 {ln 4ln 3 }
¿ 2 {ln ( 0
1 ) }6 {ln ( 4
3 ) }
¿ ln ( 0 )=
Question 11
From the above diagram, the cone formed has the form x= y2
Therefore, the volume is given by V =π
x=0
5
y2 dx
But we know that y=2 x so that
V =π
x=0
5
(2 x)2 dx=4 π
x=0
5
x2 dx
V =4 π |x3
3 |0
5
=4 π ( 53
3 )=4 π ( 125
3 )=166.667 π =523.6
Question 12
y=100 sin (2 θ) , 0 2θ π
y RMS= 1
π0
0
π
y2
¿ 1
π
0
π
104 sin 2 (2 θ)
¿ 104
π
0
π
sin 2(2θ)
We can write sin2 ( 2θ ) = 1cos ( 4 θ)
2 so that
Document Page
104
π
0
π
sin 2 (2θ)= 104
π
0
π
1cos (4 θ)
2
¿ 104
2 π
0
π
1cos (4 θ)
¿ 104
2 π |θ 1
4 sin (4 θ)|0
π
¿ 104
2 π ¿ ¿
RMS voltage= 104
2 π ( π )= 104
2 =70.7106V
Question 13
The region bounded by the given function and the specified
lines is shown in the figure above. To get the area, we
integrate the function y=x2x for 1 x 2 then subtract
the area of trapezium formed below y=x2 from x=1 ¿ x=2
as follows.
Area=
1
2
x2 dx ( 1
2 ( 2+1 ) × 1 )
¿| x3
3 |1
2
3
2 = 8
3 1
3 3
2 =5
6
Question 14

dt =

=dt , 1
=dt
Integrating both sides of the equation we obtain,
1
= dt
1
k 1
θ =dt
1
k ln ( θ )=t+C
ln ( θ )=k (t +C)
When t=2.5 min , t=65
ln ( 65 ) =k (2.5+ C) equation1
When t=5 min , t=50
ln ( 50 ) =k (5+C ) equation 2
Then, we divide equation 1 by equation 2 to get
ln ( 65 )
ln ( 50 ) = k ( 2.5+C )
k ( 5+C )
1.067066=2.5+C
5+C
1.067066(5+C )=2.5+C
1.067066 CC=2.55.33533
0.067066 C=2.83533
C=42.2767
Substituting C=42.2767 into equation 1 we get
ln ( 65 ) =k (2.542.2767)
k = ln ( 65 )
(2.542.2767)= ln ( 65 )
39.7767 =0.1049
Therefore, ln ( θ )=k (t +C) becomes
ln ( θ ) =0.1049(t42.2767)
When θ=35 ,ln ( 35 ) =0.1049(t42.2767)
Document Page
ln ( 35 )
0.1049 =(t42.2767)
33.878044=t42.2767
t=42.276733.878044=8.398656 minutes
t= ( 8.398656 ×60 ) s=503.91936
t 504 seconds
chevron_up_icon
1 out of 7
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]