Calculus and Linear Algebra Assignment: Step-by-Step Solutions

Verified

Added on  2023/04/08

|6
|1549
|233
Homework Assignment
AI Summary
This document presents detailed solutions to a calculus and linear algebra assignment, covering topics such as solving hyperbolic function equations, demonstrating properties of differentiable functions using the fundamental theorem of calculus, evaluating double integrals in polar coordinates, applying the fundamental theorem of calculus to iterated integrals, determining the equation of a plane in R3 given integral conditions, and using Gram-Schmidt orthogonalization to find an orthonormal basis for a subspace. Each problem is worked out step-by-step to provide a clear understanding of the solution process.
Document Page
Solution of Assignment ( Order No: 933942)
1. Solve 2 cosh 2 x+10 sinh2 x=5
Solution:
We use definition of hyperbolic functions:
cosh 2 x= e2 x +e2 x
2 , sinh 2 x= e2 xe2 x
2 . Therefore given equation
becomes
2 ( e2 x +e2 x
2 )+10 ( e2 xe2 x
2 )=5 …. After cancelling
e2 x +e2 x +5 e2 x5 e2 x=5
6 e2 x4 e2 x=5
6 e2 x 4
e2 x =5 ….. Now take LCM
6 e2 x e2 x4=5 e2 x
6 e4 x5 e2 x4=0. Now we put e2 x=t
6 t25 t4=0 … This is quadratic equation in t .
t=(5) ± 25+ 4 × 6× 4
2 ×6 …Simplifying we get
t= 4
3 and t=1
2 … we backsubstitute value of t
e2 x= 4
3 or e2 x=1
2 which is not possible as exponential function is
never negative.
e2 x= 4
3 that implies 2 x=log ( 4
3 )
x=1
2 log ( 4
3 )
2. Let f be differentiable on ( a , b ) and let c ( a , b ). Show that
( ab ) f ( c ) +
a
b
f ( x ) dx=
a
b

c
x
f ' ( y ) dydx
Solution:
R.H.S.=
a
b

c
x
f ' ( y ) dydx
=
a
b
[ f ( x ) f (c) ] dx …..From first fundamental theorem of calculus
=
a
b
f ( x ) dx
a
b
f ( c ) dx by separating integral
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
=
a
b
f ( x ) dxf (c)
a
b
dx
=
a
b
f ( x ) dxf (c)(ba)
=
a
b
f ( x ) dx + f (c )(ab)
= L.H.S.
3. Evaluate the double integral
D
y
x2 + y2 dA
Where D is the region in the lower half plane lying between the circles x2+ y2=1
And x2+ y2=2
Solution: We use here polar coordinates;
x=rcosθ , y=rsinθ , x2+ y2=r2 and dxdy =rdrdθ
Therefore given integral becomes
I =
θ=0
π

r =1
r = 2
rsinθ
r2 rdrdθ …….. cancelling r and integrating with respect to r ,we get
I =
θ=0
π
[ r ]1
2 sinθdθ ……… putting upper and lower limits
I = ( 21 )
0
π
sinθ
I =¿ ( 21 ) [ cosθ ]0
π …. Putting limits
I = ( 21 ) [ cos ( π ) +cos (0) ]
I =2( 21)
4. Evaluate the iterated integral

0
π

y
π
sinx
x dxdy
Solution : We use here Fundamental theorem of Calculus
There exist function F ( y) such that F ( y ) =
π
y
sinx
x dx and F' ( y )= siny
y
Let I =
0
π

y
π
sinx
x dxdy
Document Page
I =
0
π

π
y
sinx
x dxdy
I =
0
π
1. F ( y ) dy …….. After putting value of F(y)
Integrating by parts
I = [F ( y )
0
π
1 dy
0
π
[ F' ( y ) . 1 dy ] dy ]
I = [ F ( y ) . y ] 0
π
+
0
π
[ siny
y . y ] dy
I = [ F ( π ) . π 0 ] + [ cos ( y ) ] 0
π
I = [ 00 ] [ cos ( π ) cos ( 0 ) ] = [ 11 ]
I =2
5. Given that z=f ( x , y ) is a plane in R3 and

D
f ( x , y ) dA=
D
xf ( x , y ) dA=0 and f ( 1,2 ) =1
Since f (x , y ) is a plane in R3. Let f ( x , y ) =ax +by +d is equation of plane.
Given that
D
f ( x , y ) dA=0

x=0
x=3

y=0
y=3 x
( ax +by +d ) dydx=0 ….. integrating with respect to y

x=0
3
[axy + b y2
2 +dy ]0
3 y
dx =0 …. Putting limits

0
3
[3 axa x2+ b ( 96 x + x2 )
2 +3 d xd ]dx=0 …..integrating w.r.t .x
[ 3 a x2
2 a x3
3 + 9bx
2 3 x2 b
2 + b x3
6 +3 dx d x2
2 ]0
3
= 0 … putting limits
Document Page
27 a
2 27 a
3 + 27 b
2 27 b
2 + 27 b
6 +9 d 9 d
2 =0
After simplifying above equation, we get
a+ b+d=0 (i )
Similarly , we are given that
D
xf ( x , y ) dA=0

x=0
x=3

y=0
y=3 x
x ( ax+by + d ) dydx =0 …….. multiplying by x

x=0
x=3

y=0
y=3 x
( a x2 +b x y +d x ) dydx=0 ….. integrating w.r.t.y

0
3
[ a x2 y+ bx y2 + xyd ] 0
3x
dx=0 …….. putting limits

0
3
[a x2 ( 3x ) + bx (3x)2
2 +x ( 3x ) d ]dx=0 …..simplifying

0
3
[ 3 a x2a x3 + 9 bx
2 6 b x2
2 + b x3
2 +3 xd x2 d ] dx=0 ….
Integrating w.r.t.x
[ 3 a x3
3 a x4
4 + 9 b x2
4 6 b x3
6 + b x4
8 +3 d x2
2 d x3
3 ] 0
3
=0
27 a 81 a
4 + 27 × 9b
4 27 b+ 81 b
8 + 27 d
2 27 d
3 =0
Simplifying above equation we get,
6 a+ 39b +4 d=0 ..(ii)
Also we are given that f ( 1,2 ) =1 , that implies
a+ 2b+ d=1 .(iii )
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Solving equations ( i ) , ( ii ) ,(iii ) for a , b , d , we get
a= 35
2 , b=1 , d=33
2
Therefore equation of plane is f ( x , y )= 35
2 x y 33
2
6. W= Span {1+3 x+ x2 , 2+6 x+4 x2x3 } ; V =P3( R)
W = { u V :<u , v >¿ 0 , for every v W }
Let u=a+bx +c x2+ d x3
¿ u , v >¿ 0 this gives
¿ 1+3 x+ x2 , a+bx +c x2 + d x3 >¿ 0 … by using the definition of given inner
product
a+3 b+c=0 (i)
Similarly
¿ 2+6 x +4 x2x3 , a+bx +c x2 +d x3 >¿ 0 gives
2 a+6 b+ 4 cd=0 . (ii)
Solve above equations (i) and (ii) for , b , c , d .
[1 3
2 6
1 0
4 1
0 0
0 0
0 0
0 0 ] Performing R22 R1, we get
[1 3
0 0
1 0
2 1
0 0
0 0
0 0
0 0 ] from this matrix , we get two equations
a+3 b+c=0
2 cd =0
Here Number of variables are 4 and equations 2. So we consider
band d free variables.
We take d=t (say) and b=s (say)
Document Page
Therefore c= t
2 and a=3 s t
2 .
Therefore u becomes u=(3 s t
2 )+ sx + t
2 x2+ t x3
Set : s=1, t=0 therefore u becomes u1 ( say ) =x3
Set : s=0 ,t=2 therefore u becomes u2 ( say )=1+ x2+2 x3
Now ,we use Gram-Schmidt Orthogonalisation to find orthogonal vectors.
w1=x3
w2=u2¿u2 , w1> ¿
¿ w1 , w1> ¿ w1 ¿ ¿
w2= (1+x2 +2 x3 ) 1+x2+2 x3 , x3> ¿
¿ x3 , x3>¿ (x3)¿ ¿
w2= (1+ x2 +2 x3 ) 3
10 ( x3) …. Using definition of inner product
w2=1
10 3
10 x+ x2 +2 x3
Therefore w1=x3 and w2=1
10 3
10 x+ x2 +2 x3 are orthogonal
vectors.
A= {w1= x
10 3
10 , w2= 1
510 3
510 x + 10
510 x2+ 20
510 x3
} is a
orthonormal basis for W .
chevron_up_icon
1 out of 6
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]