Calculus and Analysis Homework: Vector Calculus & Fourier Series

Verified

Added on  2023/06/03

|7
|1565
|181
Homework Assignment
AI Summary
This document offers a comprehensive solution to a Calculus assignment, addressing key concepts in vector calculus and Fourier series. The solution begins with determining if a vector field is conservative, calculating line integrals, and applying Stokes' theorem. It then proceeds to use the Gauss divergence theorem to evaluate a surface integral. The assignment also includes a detailed analysis of Fourier series, including finding the Fourier series representation of a given function and calculating the coefficients for a complex exponential series. The solutions are presented step-by-step, making them suitable for students seeking to understand and master these fundamental concepts in calculus and analysis.
tabler-icon-diamond-filled.svg

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Solution
Q1)
F(x, y, z) = (2xz + zsiny, xzcosy, x2 + xsiny)
Curl F =
| ^i ^j ^k

x

y

z
xz + zsiny xzcosy x2+xsiny |
= (xcosy – xcosy) ^i¿
= 0 ^i0 ^j+0 ^k
= 0
F is conservative in R3
To determine a scalar potential function
f
y =¿2xz + zsiny,
f
y =xzcosy ,
f
y =x2 +xsiny
Integrating f
y =¿2xz + zsiny
f = x2z = xysiny + g(y,z)
The partial derivative of f = x2z = xysiny + g(y,z) with respect to y
f
y =¿xycosy + g ( y , z )
y
Comparing to f
y =xzcosy
xzcosy + y
y = xzcosy
y
y = 0
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
g(y, z) = h(z)
Partial derivative of f = x2z = xysiny + g(y,z) with respect to z
f
z =x2 + xsiny+h' (z)
Comparing this to f
y =x2 + xsiny
x2+ xsiny+h' ( z )=x2+ xsiny
= h’(z) = 0
= h(z) = C where C is a constant.
f(x, y, z) = x2z + xzsiny + C
By fundamental theorem of line integral

C

F . dr=f (1 , 0 , 4 )f (1 , 0 ,0)
f(-1, 0, 4) = 4 + C
f(1, 0, 0) = 0 + C
then f(-1, 0, 4) – f(1, 0, 0) = 4
therefore,

C

F . dr=4
Q2)
Using stokes theorem

S

( F )nds=
C

F .dr
The parabolic z = 4 – x2 – y2 intersects xy- plane as a circle x2 + y2 = 4
r(t) = (2cost, 2sint, 0), 0 > t 2 π
Document Page
r’(t) = (-2sint, 2cost, 0)

C

F . dr=
t

F ( r ( t ) )r ' ( t ) dt
=
t

(2 sin t ¿ e02 sin t¿, 2 cos te0 ,1+4 sin t cos t e0)(2 sin t ,2 cos t ,0)dt ¿
=
t

(0,2 cos t¿ ,1+4 sin t cos t) (2 sin t , 2 cos t ,0 ) dt ¿
=
t

4 cos2 t dt=4
t
1+cos 2 t
2 dt
= 2[(t)02π + ( sin 2t
2 )02π]
= 2[2 π + 0 ¿
= 4 π
=
S

( F )nds=4 π
Q3)
By Gauss divergence theorem

S

F . ^n ds=
V

¿ F dv, where V is the volume bounded by sphere S
divF = F=
x ( x ) +
y ( 2 y ) +
z ( x z2 )
= 1 + 2 + 2xz
= 3 + 2xz

S

F . ^n ds=
V

( 3+2 x z ) dxdydz …………….eq1
Converting this to spherical polar coordinate system, then
Document Page
x – 2 = rsin θcos , y = rsinθcos , z = rcosθ, 0 r 1 , 0 θ π , 0 <2 π
3 + 2xz = 3 + 2(2 + rsin θcos ) rcoθ
=3 = 4rco θ + 2rsinθcosθcos
|J| = Jacobin = r2sinθ

S

F . ^n ds=
V

( 3+2 xz ) dxdydz
=
0
1

0
π

0
2 π
( 3+ 4 rcosθ+2 rsinθcos cosθ ) J d dθdr
=
0
1

0
π

0
2 π
( 3+ 4 rcosθ+2 rsinθcos cosθ ) r2 sinθd dθdr
=
0
1

0
π

0
2 π
( 3 r2 sinθ +4 r3 sinθcosθ +2 r3 sin2 θ cos cosθ ) d dθdr
=
0
1

0
π
¿ ¿ ¿02π + (4 r3 sinθcosθ )( )02π + 2r3sin2
θcos θ(sin ¿02π)dθdr
Since sin2π= 0 = sin0
=
0
1

0
π
2 π ( 3 r2 sinθ+ 4 r3 sinθcosθ ) dθdr
= 2π
0
1

0
π
( 3 r 2 sinθ+ 42 sin2 θ ) dθdr
Therefore, sin2 θ=2 sinθcosθ
= 2π
0
1
¿ ¿0π + 2r3(cos 2 θ
2 ¿0π]dr
Since cosπ = -1, cos0 = 1, cos2π = 1
= 2π
0
1
( 3 r2 ( cosπcos 0 ) r3 ( cos 2 πcos 0 ) ) dr
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
= 2π
0
1
3 r 2 ( 11 ) r3 (11)¿ dr ¿
= 2π
0
1
6 r2 dr
= 12 π
0
1
r2 dr
= 12 π [ r 3
3 ]10
= 12π[1/3 – 0]
= 4π
Q4)
a) We are given f(x) = x4 - 2π2 x2 ,π x π
F(x) = x4 - 2 π2 x2
f(-x) = (-x)4-2π2(-x)2 = x4 -2π2x2
it is a exists even function
f(x) = a 0
2 +
n=1

ancosnx
bn = 0
a0 = 2
π
0
π
f ( x ) dx= 2
π
0
π
( x42 π2 x2 ) dx
= 2
π ( x5
5 2 π 2 x3
3 )0π
= 2
π ( 3 π 510 π 5
15 )
= ( 14 π4
15 )
Document Page
an = 2
π
0
π
f ( x ) cosnxdx
= 2
π
0
π
( x42 π2 x2 ) cosnxdx
= 2
π ¿– 24x cosnx
n4 + 24sinnx
n5 ¿0π
= 2
π [0+0024 π (1 )n
n4 +00]
= 48 (1 )n
n4 = 48 (1 )n+ 1
n4
Required fourier series
F(x) = a 0
2 +
n=1

ancosnx
= 7 x4
15 +
n=1
48 (1 )n+1
n4 cosnx
x4 - 2 π 2 x2=7 x4
15 48
14 cosx 48
24 cos 2 x + 48
34 cos 3 x 48
44 cos 4 x +
b) put x = π
x4 - 2 π 2 x2=48( 1
14 + 1
24 + 1
34 + 1
44 )
15 π4 +7 π4
15 1
48 = 1
14 + 1
24 + 1
34 + 1
44
8 π4
15 1
48 = 1
14 + 1
24 + 1
34 + 1
44
Document Page
π4
90 = 1
14 + 1
24 + 1
34 + 1
44
Q5)
f(t) =
n=

Cn*einω0 t
Cn = 1
π
π
π
f (t)einω0 t dt
Calculate Cn for the given function
Cn = 1
π
π
π
t e2 t einω 0 t dt
Integrate by parts fg '=fgf ' g
f(t) = t:g’(t) = einω0 t 2 t
The integral will be
Solving the indefinite integral
Cn = 1
π ¿
U = -in ω0t – 2t
dt = 1
inω02 du
Cn = 1
π [ t einω0 t 2t
inω 0+2 einω0 t 2 t
(inω 0+2)(inω 0+2) ]-ππ
Cn = 1
π (( π e4 π 0 2i π e4 π +i e4 π )e2 iπnω 0 +πnω 02 i¿ (eiπnω 02 π )¿¿ i n2 ω2 0+ 4 04 i)
Cn= ( ( π e4 π 0 2i π e4 π +i e4 π ) e2 iπnω 0+ πnω 02 i¿ (eiπnω 02 π )¿¿ i n2 ω2 0 π +4 0 π4 i π )
From this coefficient we can be able to find the Fourier complex exponential series
chevron_up_icon
1 out of 7
circle_padding
hide_on_mobile
zoom_out_icon
logo.png

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]